Cristóbal Teresa, Padrón Gabino, Lorenzo-Navarro Javier, Quesada-Arencibia Alexis, García Carmelo R
Institute for Cybernetics, Campus de Tafira, Las Palmas de Gran Canaria, University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain.
University Institute of Intelligent Systems and Numeric Applications in Engineering, Campus de Tafira, Las Palmas de Gran Canaria, University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain.
Entropy (Basel). 2018 Feb 20;20(2):133. doi: 10.3390/e20020133.
The development of efficient mass transit systems that provide quality of service is a major challenge for modern societies. To meet this challenge, it is essential to understand user demand. This article proposes using new time-dependent attributes to represent demand, attributes that differ from those that have traditionally been used in the design and planning of this type of transit system. Data mining was used to obtain these new attributes; they were created using clustering techniques, and their quality evaluated with the Shannon entropy function and with neural networks. The methodology was implemented on an intercity public transport company and the results demonstrate that the attributes obtained offer a more precise understanding of demand and enable predictions to be made with acceptable precision.
开发提供优质服务的高效公共交通系统是现代社会面临的一项重大挑战。为应对这一挑战,了解用户需求至关重要。本文建议使用新的时间相关属性来表示需求,这些属性不同于传统上在这类交通系统设计和规划中使用的属性。通过数据挖掘获得这些新属性;利用聚类技术创建这些属性,并使用香农熵函数和神经网络评估其质量。该方法在一家城际公共交通公司得到应用,结果表明所获得的属性能够更精确地理解需求,并能以可接受的精度进行预测。