Suppr超能文献

基于轮廓相似度的公交出行时间预测模型

Bus Travel Time Prediction Model Based on Profile Similarity.

作者信息

Cristóbal Teresa, Padrón Gabino, Quesada-Arencibia Alexis, Alayón Francisco, de Blasio Gabriel, García Carmelo R

机构信息

Institute for Cybernetics, University of Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain.

出版信息

Sensors (Basel). 2019 Jun 28;19(13):2869. doi: 10.3390/s19132869.

Abstract

In road-based mass transit systems, travel time is a key factor in providing quality of service. This article proposes a method of predicting travel time for this type of transport system. This method estimates travel time by taking into account its historical behaviour, represented by historical profiles, and the current behaviour recorded on the public transport vehicle for which the prediction is to be made. The model uses the -medoids clustering algorithm to obtain historical travel time profiles. A relevant feature of the model is that it does not require recent travel time data from other vehicles. For this reason, the proposed model may be used in intercity transport contexts in which service planning is carried out according to timetables. The proposed model has been tested with two real cases of intercity public transport routes and from the results obtained we may conclude that, in general, the average error of the predictions is around 13% compared to the observed travel time values.

摘要

在基于道路的公共交通系统中,出行时间是提供服务质量的关键因素。本文提出了一种预测此类运输系统出行时间的方法。该方法通过考虑由历史概况表示的历史行为以及要进行预测的公共交通工具上记录的当前行为来估计出行时间。该模型使用 - 中心点聚类算法来获取历史出行时间概况。该模型的一个相关特性是它不需要来自其他车辆的近期出行时间数据。因此,所提出的模型可用于根据时刻表进行服务规划的城际运输环境中。所提出的模型已在两个城际公共交通路线的实际案例中进行了测试,从获得的结果我们可以得出结论,总体而言,与观察到的出行时间值相比,预测的平均误差约为13%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c2/6650887/b8206efed95a/sensors-19-02869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验