Chen Ying, Liu Guizhong
School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Entropy (Basel). 2018 Mar 8;20(3):181. doi: 10.3390/e20030181.
Rate-distortion optimization (RDO) plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC). Among all the possible coding modes, it aims to select the one which has the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned through the choice of the Lagrange multiplier. Despite the prevalence of conventional method for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not available, with on consideration of the content features of input signal. In this paper, an efficient content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for 3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we introduce a novel weighting method, which takes account of the mutual information, gradient per pixel, and texture homogeneity to measure the temporal subband characteristics after applying the motion-compensated temporal filtering (MCTF) technique. Second, based on the proposed subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results demonstrate that the proposed algorithm enables more satisfactory video quality with negligible additional computational complexity.
率失真优化(RDO)在大幅提高编码效率方面起着至关重要的作用。目前,率失真优化模式决策在可伸缩视频编码(SVC)中得到了广泛应用。在所有可能的编码模式中,它旨在选择在比特率和压缩失真之间具有最佳权衡的模式。具体而言,这种权衡是通过拉格朗日乘数的选择来调整的。尽管传统的拉格朗日乘数选择方法在混合视频编码中很普遍,但考虑到输入信号的内容特征,其基础公式不适用于基于三维小波的SVC,因为在这种情况下量化步长的明确值不可用。本文针对基于三维小波的面向质量可伸缩性的SVC,在RDO的背景下提出了一种高效的内容自适应拉格朗日乘数选择算法。我们的贡献有两个方面。第一,我们引入了一种新颖的加权方法,该方法考虑互信息、每像素梯度和纹理均匀性,以在应用运动补偿时间滤波(MCTF)技术后测量时间子带特征。第二,基于所提出的子带加权因子模型,我们推导出了最优拉格朗日乘数。实验结果表明,该算法能够在增加可忽略不计的计算复杂度的情况下实现更令人满意的视频质量。