Suppr超能文献

Generalized Pesin-Like Identity and Scaling Relations at the Chaos Threshold of the Rössler System.

作者信息

Cetin Kivanc, Afsar Ozgur, Tirnakli Ugur

机构信息

Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey.

出版信息

Entropy (Basel). 2018 Mar 23;20(4):216. doi: 10.3390/e20040216.

Abstract

In this paper, using the Poincaré section of the flow we numerically verify a generalization of a Pesin-like identity at the chaos threshold of the Rössler system, which is one of the most popular three-dimensional continuous systems. As Poincaré section points of the flow show similar behavior to that of the logistic map, for the Rössler system we also investigate the relationships with respect to important properties of nonlinear dynamics, such as correlation length, fractal dimension, and the Lyapunov exponent in the vicinity of the chaos threshold.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc4b/7512731/db89c0b25b04/entropy-20-00216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验