Lin Xiaoran, Zhou Shangbo, Tang Hongbin, Qi Ying, Xie Xianzhong
College of Computer Science, Chongqing University, Chongqing 400044, China.
Chongqing/MII Key Lab. of Computer Network and Communication Technology, Chongqing 400044, China.
Entropy (Basel). 2018 Apr 4;20(4):251. doi: 10.3390/e20040251.
Visual information processing is one of the fields of cognitive informatics. In this paper, a two-layer fractional-order chaotic network, which can simulate the mechanism of visual selection and shifting, is established. Unlike other object selection models, the proposed model introduces control units to select object. The first chaotic network layer of the model is used to implement image segmentation. A control layer is added as the second layer, consisting of a central neuron, which controls object selection and shifting. To implement visual selection and shifting, a strategy is proposed that can achieve different subnets corresponding to the objects in the first layer synchronizing with the central neuron at different time. The central unit acting as the central nervous system synchronizes with different subnets (hybrid systems), implementing the mechanism of visual selection and shifting in the human system. The proposed model corresponds better with the human visual system than the typical model of visual information encoding and transmission and provides new possibilities for further analysis of the mechanisms of the human cognitive system. The reasonability of the proposed model is verified by experiments using artificial and natural images.
视觉信息处理是认知信息学的领域之一。本文建立了一个能够模拟视觉选择和转移机制的两层分数阶混沌网络。与其他对象选择模型不同,该模型引入了控制单元来选择对象。模型的第一层混沌网络用于实现图像分割。增加了一个控制层作为第二层,由一个中央神经元组成,它控制对象的选择和转移。为了实现视觉选择和转移,提出了一种策略,该策略可以使与第一层中的对象相对应的不同子网在不同时间与中央神经元同步。作为中枢神经系统的中央单元与不同子网(混合系统)同步,实现人类系统中的视觉选择和转移机制。与典型的视觉信息编码和传输模型相比,该模型与人类视觉系统的对应性更好,为进一步分析人类认知系统的机制提供了新的可能性。通过使用人工图像和自然图像进行实验,验证了该模型的合理性。