Makkeh Abdullah, Theis Dirk Oliver, Vicente Raul
Institute of Computer Science, University of Tartu, Ülikooli 17, 51014 Tartu, Estonia.
Entropy (Basel). 2018 Apr 11;20(4):271. doi: 10.3390/e20040271.
Makkeh, Theis, and Vicente found that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decomposition (BROJA PID) measure. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then, we describe in detail our software, explain how to use it, and perform some experiments comparing it to other estimators. Finally, we show that the software can be extended to compute some quantities of a trivaraite PID measure.
马克、泰斯和维森特发现,锥规划模型在计算贝奇inger等人的部分信息分解(BROJA PID)度量时最为稳健。我们开发了一个生产级的稳健软件,该软件基于锥规划模型计算BROJA PID度量。在本文中,我们证明了锥规划的强对偶性这一重要性质,并证明了锥规划与原始凸问题之间的等价性。然后,我们详细描述我们的软件,解释如何使用它,并进行一些将其与其他估计器进行比较的实验。最后,我们表明该软件可以扩展以计算三变量PID度量的一些量。