Ehrlich David A, Schick-Poland Kyle, Makkeh Abdullah, Lanfermann Felix, Wollstadt Patricia, Wibral Michael
Göttingen Campus Institute for Dynamics of Biological Networks, <a href="https://ror.org/01y9bpm73">Universität Göttingen</a>, Göttingen 37073, Germany.
<a href="https://ror.org/022c1xk47">Honda</a> Research Institute Europe GmbH, Offenbach am Main 63073, Germany.
Phys Rev E. 2024 Jul;110(1-1):014115. doi: 10.1103/PhysRevE.110.014115.
Describing statistical dependencies is foundational to empirical scientific research. For uncovering intricate and possibly nonlinear dependencies between a single target variable and several source variables within a system, a principled and versatile framework can be found in the theory of partial information decomposition (PID). Nevertheless, the majority of existing PID measures are restricted to categorical variables, while many systems of interest in science are continuous. In this paper, we present a novel analytic formulation for continuous redundancy-a generalization of mutual information-drawing inspiration from the concept of shared exclusions in probability space as in the discrete PID definition of I_{∩}^{sx}. Furthermore, we introduce a nearest-neighbor-based estimator for continuous PID and showcase its effectiveness by applying it to a simulated energy management system provided by the Honda Research Institute Europe GmbH. This work bridges the gap between the measure-theoretically postulated existence proofs for a continuous I_{∩}^{sx} and its practical application to real-world scientific problems.
描述统计依赖性是实证科学研究的基础。为了揭示系统中单个目标变量与多个源变量之间复杂且可能是非线性的依赖性,在部分信息分解(PID)理论中可以找到一个有原则且通用的框架。然而,现有的大多数PID度量仅限于分类变量,而科学中许多感兴趣的系统是连续的。在本文中,我们提出了一种用于连续冗余的新颖解析公式——互信息的推广——它从概率空间中共享排除的概念中汲取灵感,就像离散PID定义(I_{∩}^{sx})一样。此外,我们引入了一种基于最近邻的连续PID估计器,并通过将其应用于本田欧洲研究所提供的模拟能源管理系统来展示其有效性。这项工作弥合了连续(I_{∩}^{sx})在测度理论上假设的存在性证明与其在实际科学问题中的实际应用之间的差距。