Daoud Mohammed, Kibler Maurice R
Department of Physics, Faculty of Sciences Ain Chock, University Hassan II, Casablanca 91 000, Morocco.
Groupe Théorie, Institut de Physique Nucléaire, CNRS/IN2P3, 69622 Villeurbanne, France.
Entropy (Basel). 2018 Apr 17;20(4):292. doi: 10.3390/e20040292.
A relation is established in the present paper between Dicke states in a -dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension . This provides a natural way to deal with the separable and entangled states of a system of N = d - 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (-level) states are represented by points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a -dimensional space) is describable by a -qubit vector (in a -dimensional space). In such a scheme, the permanent of the matrix describing the overlap between the qubits makes it possible to measure the entanglement between the qubits forming the qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to the permanent and called , is introduced for characterizing the entanglement of a symmetric qudit arising from qubits. For d = 3 ( ⇔ N = 2 ), this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
本文建立了d维空间中的狄克态与有限维广义外尔 - 海森堡代数表示空间中的向量之间的关系。这为处理N = d - 1个对称量子比特态系统的可分态和纠缠态提供了一种自然的方法。利用狄克态的分解性质,证明了可分态与本文所考虑的广义外尔 - 海森堡代数相关的佩雷洛莫夫相干态一致。在所谓的马约拉纳方案中,量子d比特(d能级)态由布洛赫球面上的点表示;粗略地说,可以说一个(d维空间中的)量子d比特可以由一个(2^d维空间中的)2^d量子比特向量来描述。在这样的方案中,描述2^d个量子比特之间重叠的矩阵的永久行列式使得测量构成量子d比特的2^d个量子比特之间的纠缠成为可能。这通过富比尼 - 斯图迪度规分析得到了证实。引入了一个与永久行列式成比例的新参数,称为τ,用于表征由2^d个量子比特产生的对称量子d比特的纠缠。对于d = 3(⇔ N = 2),这个参数构成了两个量子比特并发度的替代量。还给出了d = 4和5的其他例子。本文以量子d比特的马约拉纳星与巴尔加门函数零点之间的联系作为结尾。