Pérez Jesús Emmanuel Solís, Gómez-Aguilar José Francisco, Baleanu Dumitru, Tchier Fairouz
Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Mexico.
CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Mexico.
Entropy (Basel). 2018 May 20;20(5):384. doi: 10.3390/e20050384.
This paper deals with a numerical simulation of fractional conformable attractors of type Rabinovich-Fabrikant, Thomas' cyclically symmetric attractor and Newton-Leipnik. Fractional conformable and β -conformable derivatives of Liouville-Caputo type are considered to solve the proposed systems. A numerical method based on the Adams-Moulton algorithm is employed to approximate the numerical simulations of the fractional-order conformable attractors. The results of the new type of fractional conformable and β -conformable attractors are provided to illustrate the effectiveness of the proposed method.
本文研究了拉宾诺维奇 - 法布里坎特型、托马斯循环对称吸引子和牛顿 - 莱普尼克型分数阶共形吸引子的数值模拟。考虑用刘维尔 - 卡普托型分数阶共形导数和β - 共形导数来求解所提出的系统。采用基于亚当斯 - 莫尔顿算法的数值方法来近似分数阶共形吸引子的数值模拟。给出了新型分数阶共形和β - 共形吸引子的结果,以说明所提方法的有效性。