Suppr超能文献

-指数族的信息几何:对偶平坦、黑塞和勒让德结构。

Information Geometry of -Exponential Families: Dually-Flat, Hessian and Legendre Structures.

作者信息

Scarfone Antonio M, Matsuzoe Hiroshi, Wada Tatsuaki

机构信息

Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche (ISC-CNR), c/o Politecnico di Torino, 10129 Torino, Italy.

Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

出版信息

Entropy (Basel). 2018 Jun 5;20(6):436. doi: 10.3390/e20060436.

Abstract

In this paper, we present a review of recent developments on the κ -deformed statistical mechanics in the framework of the information geometry. Three different geometric structures are introduced in the κ -formalism which are obtained starting from three, not equivalent, divergence functions, corresponding to the κ -deformed version of Kullback-Leibler, "Kerridge" and Brègman divergences. The first statistical manifold derived from the κ -Kullback-Leibler divergence form an invariant geometry with a positive curvature that vanishes in the κ → 0 limit. The other two statistical manifolds are related to each other by means of a scaling transform and are both dually-flat. They have a dualistic Hessian structure endowed by a deformed Fisher metric and an affine connection that are consistent with a statistical scalar product based on the κ -escort expectation. These flat geometries admit dual potentials corresponding to the thermodynamic Massieu and entropy functions that induce a Legendre structure of κ -thermodynamics in the picture of the information geometry.

摘要

在本文中,我们综述了信息几何框架下κ变形统计力学的最新进展。在κ形式体系中引入了三种不同的几何结构,它们分别从三个不等价的散度函数导出,对应于库尔贝克 - 莱布勒、“克里奇”和布雷格曼散度的κ变形版本。从κ库尔贝克 - 莱布勒散度导出的第一个统计流形形成了一个具有正曲率的不变几何,该曲率在κ→0极限时消失。另外两个统计流形通过缩放变换相互关联,并且都是对偶平坦的。它们具有由变形的费希尔度量和仿射联络赋予的对偶黑塞结构,这与基于κ伴期望的统计标量积一致。这些平坦几何允许对应于热力学马西厄和熵函数的对偶势,在信息几何的图景中诱导出κ热力学的勒让德结构。

相似文献

1
Information Geometry of -Exponential Families: Dually-Flat, Hessian and Legendre Structures.
Entropy (Basel). 2018 Jun 5;20(6):436. doi: 10.3390/e20060436.
2
-Deformation: A Canonical Framework for Statistical Manifolds of Constant Curvature.
Entropy (Basel). 2022 Jan 27;24(2):193. doi: 10.3390/e24020193.
3
On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds.
Entropy (Basel). 2020 Jun 28;22(7):713. doi: 10.3390/e22070713.
4
An Elementary Introduction to Information Geometry.
Entropy (Basel). 2020 Sep 29;22(10):1100. doi: 10.3390/e22101100.
6
Conformal Flattening for Deformed Information Geometries on the Probability Simplex .
Entropy (Basel). 2018 Mar 10;20(3):186. doi: 10.3390/e20030186.
7
Pseudo-Riemannian geometry encodes information geometry in optimal transport.
Inf Geom. 2022;5(1):131-159. doi: 10.1007/s41884-021-00053-7. Epub 2021 Jul 30.
8
Extended Divergence on a Foliation by Deformed Probability Simplexes.
Entropy (Basel). 2022 Nov 28;24(12):1736. doi: 10.3390/e24121736.
9
Geometric Structures Induced by Deformations of the Legendre Transform.
Entropy (Basel). 2023 Apr 18;25(4):678. doi: 10.3390/e25040678.
10
Geometry of escort distributions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 1):031101. doi: 10.1103/PhysRevE.68.031101. Epub 2003 Sep 5.

引用本文的文献

1
Twenty Years of Kaniadakis Entropy: Current Trends and Future Perspectives.
Entropy (Basel). 2025 Feb 27;27(3):247. doi: 10.3390/e27030247.
2
Multi-Additivity in Kaniadakis Entropy.
Entropy (Basel). 2024 Jan 17;26(1):77. doi: 10.3390/e26010077.
3
Geometric Structures Induced by Deformations of the Legendre Transform.
Entropy (Basel). 2023 Apr 18;25(4):678. doi: 10.3390/e25040678.
4
Extended Divergence on a Foliation by Deformed Probability Simplexes.
Entropy (Basel). 2022 Nov 28;24(12):1736. doi: 10.3390/e24121736.
5
The -Deformed Calogero-Leyvraz Lagrangians and Applications to Integrable Dynamical Systems.
Entropy (Basel). 2022 Nov 17;24(11):1673. doi: 10.3390/e24111673.

本文引用的文献

1
Composition law of κ-entropy for statistically independent systems.
Phys Rev E. 2017 May;95(5-1):052112. doi: 10.1103/PhysRevE.95.052112. Epub 2017 May 8.
2
Statistical mechanics in the context of special relativity. II.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036108. doi: 10.1103/PhysRevE.72.036108. Epub 2005 Sep 9.
3
Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026123. doi: 10.1103/PhysRevE.72.026123. Epub 2005 Aug 19.
4
Two-parameter deformations of logarithm, exponential, and entropy: a consistent framework for generalized statistical mechanics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046128. doi: 10.1103/PhysRevE.71.046128. Epub 2005 Apr 20.
5
Statistical mechanics in the context of special relativity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 2):056125. doi: 10.1103/PhysRevE.66.056125. Epub 2002 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验