Ohara Atsumi
Department of Electrical and Electronics, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
Entropy (Basel). 2018 Mar 10;20(3):186. doi: 10.3390/e20030186.
Recent progress of theories and applications regarding statistical models with generalized exponential functions in statistical science is giving an impact on the movement to deform the standard structure of information geometry. For this purpose, various representing functions are playing central roles. In this paper, we consider two important notions in information geometry, i.e., invariance and dual flatness, from a viewpoint of representing functions. We first characterize a pair of representing functions that realizes the invariant geometry by solving a system of ordinary differential equations. Next, by proposing a new transformation technique, i.e., conformal flattening, we construct dually flat geometries from a certain class of non-flat geometries. Finally, we apply the results to demonstrate several properties of gradient flows on the probability simplex.
统计科学中具有广义指数函数的统计模型的理论与应用的最新进展,正在对变形信息几何标准结构的运动产生影响。为此,各种表示函数发挥着核心作用。在本文中,我们从表示函数的角度考虑信息几何中的两个重要概念,即不变性和对偶平坦性。我们首先通过求解常微分方程组来刻画实现不变几何的一对表示函数。接下来,通过提出一种新的变换技术,即共形平坦化,我们从某类非平坦几何构造对偶平坦几何。最后,我们应用这些结果来证明概率单纯形上梯度流的几个性质。