Suppr超能文献

莫诺-怀曼-尚热分子的内在计算

Intrinsic Computation of a Monod-Wyman-Changeux Molecule.

作者信息

Marzen Sarah

机构信息

Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Entropy (Basel). 2018 Aug 11;20(8):599. doi: 10.3390/e20080599.

Abstract

Causal states are minimal sufficient statistics of prediction of a stochastic process, their coding cost is called statistical complexity, and the implied causal structure yields a sense of the process' "intrinsic computation". We discuss how statistical complexity changes with slight changes to the underlying model- in this case, a biologically-motivated dynamical model, that of a Monod-Wyman-Changeux molecule. Perturbations to kinetic rates cause statistical complexity to jump from finite to infinite. The same is not true for excess entropy, the mutual information between past and future, or for the molecule's transfer function. We discuss the implications of this for the relationship between intrinsic and functional computation of biological sensory systems.

摘要

因果状态是随机过程预测的最小充分统计量,其编码成本称为统计复杂度,隐含的因果结构产生了过程“内在计算”的概念。我们讨论了统计复杂度如何随基础模型的微小变化而变化——在这种情况下,是一个具有生物学动机的动力学模型,即莫诺-怀曼-尚热分子模型。动力学速率的扰动会导致统计复杂度从有限跃变为无限。对于过剩熵、过去与未来之间的互信息或分子的传递函数而言,情况并非如此。我们讨论了这对于生物感官系统内在计算与功能计算之间关系的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7b9/7513124/9c3db97a862b/entropy-20-00599-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验