Bicer Cenker
Statistics Department, University of Kirikkale, 71450 Kirikkale, Turkey.
Entropy (Basel). 2018 Sep 21;20(10):723. doi: 10.3390/e20100723.
The geometric process (GP) is a simple and direct approach to modeling of the successive inter-arrival time data set with a monotonic trend. In addition, it is a quite important alternative to the non-homogeneous Poisson process. In the present paper, the parameter estimation problem for GP is considered, when the distribution of the first occurrence time is Power Lindley with parameters α and λ . To overcome the parameter estimation problem for GP, the maximum likelihood, modified moments, modified L-moments and modified least-squares estimators are obtained for parameters , α and λ . The mean, bias and mean squared error (MSE) values associated with these estimators are evaluated for small, moderate and large sample sizes by using Monte Carlo simulations. Furthermore, two illustrative examples using real data sets are presented in the paper.
几何过程(GP)是一种对具有单调趋势的连续到达间隔时间数据集进行建模的简单直接方法。此外,它是齐次泊松过程的一种非常重要的替代方法。在本文中,考虑了GP的参数估计问题,其中首次出现时间的分布是具有参数α和λ的幂林德利分布。为了克服GP的参数估计问题,获得了参数α和λ的最大似然估计、修正矩估计、修正L矩估计和修正最小二乘估计。通过蒙特卡罗模拟对小、中、大样本量下与这些估计相关的均值、偏差和均方误差(MSE)值进行了评估。此外,本文还给出了两个使用实际数据集的示例。