Singh Sukhdev, Dey Sanku, Kumar Devendra
Department of Mathematics, Chandigarh University, Punjab, India.
Department of Statistics, St. Anthony's College, Shillong, India.
J Appl Stat. 2019 Oct 30;47(9):1543-1561. doi: 10.1080/02664763.2019.1683153. eCollection 2020.
This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.
本文基于较低记录值探讨了广义林德利分布未知参数的频率主义估计和贝叶斯估计问题。我们首先推导了较低记录值的单矩和乘积矩的精确显式表达式,然后利用这些结果计算两个较低记录值之间的均值、方差和协方差。接下来,我们得到了最大似然估计量和相关的渐近置信区间。此外,在广义林德利分布的形状参数和尺度参数均为伽马先验假设下,我们得到了贝叶斯估计量以及相关的最高后验密度区间估计。针对对称(平方误差)和非对称(线性指数(LINEX))损失函数对贝叶斯估计进行了研究。最后,我们计算了未来记录值的贝叶斯预测估计和预测区间估计。为了说明研究结果,分析了一个真实数据集,并进行了蒙特卡罗模拟,以比较所提出的估计和预测方法的性能。