Suppr超能文献

添加Zr对放电等离子烧结制备的CoCrFeNiMn高熵合金微观结构及力学性能的影响

Effect of Zr Addition on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Synthesized by Spark Plasma Sintering.

作者信息

Zhang Hongling, Zhang Lei, Liu Xinyu, Chen Qiang, Xu Yi

机构信息

School of materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China.

Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd, Chengdu 610031, China.

出版信息

Entropy (Basel). 2018 Oct 23;20(11):810. doi: 10.3390/e20110810.

Abstract

As a classic high-entropy alloy system, CoCrFeNiMn is widely investigated. In the present work, we used ZrH powders and atomized CoCrFeNiMn powders as raw materials to prepare CoCrFeNiMnZr ( = 0, 0.2, 0.5, 0.8, 1.0) alloys by mechanical alloying (MA), followed by spark plasma sintering (SPS). During the MA process, a small amount of Zr ( ≤ 0.5) can be completely dissolved into CoCrFeNiMn matrix, when the Zr content is above 0.5, the ZrH is excessive. After SPS, CoCrFeNiMn alloy is still as single face-centered cubic (FCC) solid solution, and CoCrFeNiMnZr ( ≥ 0.2) alloys have two distinct microstructural domains, one is a single FCC phase without Zr, the other is a Zr-rich microstructure composed of FCC phase, B2 phase, ZrNi, and σ phase. The multi-phase microstructures can be attributed to the large lattice strain and negative enthalpy of mixing, caused by the addition of Zr. It is worth noting that two types of nanoprecipitates (body-centered cubic (BCC) phase and ZrNi) are precipitated in the Zr-rich region. These can significantly increase the yield strength of the alloys.

摘要

作为一种典型的高熵合金体系,CoCrFeNiMn受到了广泛研究。在本工作中,我们以ZrH粉末和雾化CoCrFeNiMn粉末为原料,通过机械合金化(MA)制备CoCrFeNiMnZr(=0、0.2、0.5、0.8、1.0)合金,随后进行放电等离子烧结(SPS)。在机械合金化过程中,少量的Zr(≤0.5)能够完全溶解到CoCrFeNiMn基体中,当Zr含量高于0.5时,ZrH过量。经过放电等离子烧结后,CoCrFeNiMn合金仍为单一的面心立方(FCC)固溶体,而CoCrFeNiMnZr(≥0.2)合金具有两个明显的微观结构区域,一个是不含Zr的单一FCC相,另一个是由FCC相、B2相、ZrNi和σ相组成的富Zr微观结构。这种多相微观结构可归因于添加Zr所导致的大晶格应变和负混合焓。值得注意的是,在富Zr区域析出了两种类型的纳米析出相(体心立方(BCC)相和ZrNi)。这些析出相能够显著提高合金的屈服强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/811f/7512374/54a207f65146/entropy-20-00810-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验