Suppr超能文献

基于多特征熵融合与混合分类器的高压断路器机械故障诊断

Mechanical Fault Diagnosis of HVCBs Based on Multi-Feature Entropy Fusion and Hybrid Classifier.

作者信息

Wan Shuting, Chen Lei, Dou Longjiang, Zhou Jianping

机构信息

Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China.

Maintenance Company of State Grid Zhejiang Electric Power Company, Hangzhou 310000, China.

出版信息

Entropy (Basel). 2018 Nov 5;20(11):847. doi: 10.3390/e20110847.

Abstract

As high-voltage circuit breakers (HVCBs) are directly related to the safety and the stability of a power grid, it is of great significance to carry out fault diagnoses of HVCBs. To accurately identify operating states of HVCBs, a novel mechanical fault diagnosis method of HVCBs based on multi-feature entropy fusion (MFEF) and a hybrid classifier is proposed. MFEF involves the decomposition of vibration signals of HVCBs into several intrinsic mode functions using variational mode decomposition (VMD) and the calculation of multi-feature entropy by the integration of three Shannon entropies. Principle component analysis (PCA) is then used to reduce the dimension of the multi-feature entropy to achieve an effective fusion of features for selecting the feature vector. The detection of an unknown fault in HVCBs is achieved using support vector data description (SVDD) trained by normal-state samples and specific fault samples. On this basis, the identification and classification of the known states are realized by the support vector machine (SVM). Three faults (i.e., closing spring force decrease fault, buffer spring invalid fault, opening spring force decrease fault) are simulated on a real SF6 HVCB to test the feasibility of the proposed method. The detection accuracies of the unknown fault are 100%, 87.5%, and 100% respectively when each of the three faults is assumed to be the unknown fault. The comparative experiments show that SVM has no ability to detect the unknown fault, and that one-class support vector machine (OCSVM) has a weaker ability to detect the unknown fault than SVDD. For known-state classification, the adoption of the MFEF method achieved an accuracy of 100%, while the use of a single-feature method only achieved an accuracy of 75%. These results indicate that the proposed method combining MFEF with hybrid classifier is thus more efficient and robust than traditional methods.

摘要

由于高压断路器(HVCB)直接关系到电网的安全与稳定,对其进行故障诊断具有重要意义。为了准确识别高压断路器的运行状态,提出了一种基于多特征熵融合(MFEF)和混合分类器的高压断路器机械故障诊断新方法。多特征熵融合包括使用变分模态分解(VMD)将高压断路器的振动信号分解为多个固有模态函数,并通过整合三个香农熵来计算多特征熵。然后使用主成分分析(PCA)对多特征熵进行降维,以实现特征的有效融合,从而选择特征向量。利用由正常状态样本和特定故障样本训练的支持向量数据描述(SVDD)来检测高压断路器中的未知故障。在此基础上,通过支持向量机(SVM)实现对已知状态的识别和分类。在一台真实的SF6高压断路器上模拟了三种故障(即合闸弹簧力减小故障、缓冲弹簧失效故障、分闸弹簧力减小故障),以测试所提方法的可行性。当将这三种故障分别假设为未知故障时,未知故障的检测准确率分别为100%、87.5%和100%。对比实验表明,支持向量机无法检测未知故障,且单类支持向量机(OCSVM)检测未知故障的能力比支持向量数据描述弱。对于已知状态分类,采用多特征熵融合方法的准确率达到100%,而使用单特征方法的准确率仅为75%。这些结果表明,所提的将多特征熵融合与混合分类器相结合的方法比传统方法更高效、更稳健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/171e/7512408/4ebf262a2954/entropy-20-00847-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验