Hicks Will
Investec Bank PLC, 30 Gresham Street, London EC2V 7QP, UK.
Entropy (Basel). 2019 Jan 23;21(2):105. doi: 10.3390/e21020105.
The Accardi-Boukas quantum Black-Scholes framework, provides a means by which one can apply the Hudson-Parthasarathy quantum stochastic calculus to problems in finance. Solutions to these equations can be modelled using nonlocal diffusion processes, via a Kramers-Moyal expansion, and this provides useful tools to understand their behaviour. In this paper we develop further links between quantum stochastic processes, and nonlocal diffusions, by inverting the question, and showing how certain nonlocal diffusions can be written as quantum stochastic processes. We then go on to show how one can use path integral formalism, and PT symmetric quantum mechanics, to build a non-Gaussian kernel function for the Accardi-Boukas quantum Black-Scholes. Behaviours observed in the real market are a natural model output, rather than something that must be deliberately included.
阿卡迪-布卡斯量子布莱克-斯科尔斯框架提供了一种方法,通过该方法可以将哈德森-帕塔萨拉蒂量子随机微积分应用于金融问题。这些方程的解可以通过克莱默斯-莫亚尔展开,使用非局部扩散过程进行建模,这为理解它们的行为提供了有用的工具。在本文中,我们通过颠倒问题并展示某些非局部扩散如何可以写成量子随机过程,进一步发展了量子随机过程与非局部扩散之间的联系。然后我们继续展示如何使用路径积分形式和PT对称量子力学为阿卡迪-布卡斯量子布莱克-斯科尔斯构建一个非高斯核函数。在实际市场中观察到的行为是自然的模型输出,而不是必须刻意纳入的东西。