Rydin Gorjão Leonardo, Witthaut Dirk, Lehnertz Klaus, Lind Pedro G
Forschungszentrum Jülich, Institute for Energy and Climate Research-Systems Analysis and Technology Evaluation (IEK-STE), 52428 Jülich, Germany.
Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany.
Entropy (Basel). 2021 Apr 24;23(5):517. doi: 10.3390/e23050517.
With the aim of improving the reconstruction of stochastic evolution equations from empirical time-series data, we derive a full representation of the generator of the Kramers-Moyal operator via a power-series expansion of the exponential operator. This expansion is necessary for deriving the different terms in a stochastic differential equation. With the full representation of this operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary order into terms with and without derivatives of the Kramers-Moyal coefficients. We arrive at a closed-form solution expressed through conditional moments, which can be extracted directly from time-series data with a finite sampling intervals. We provide all finite-time correction terms for parametric and non-parametric estimation of the Kramers-Moyal coefficients for discontinuous processes which can be easily implemented-employing Bell polynomials-in time-series analyses of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data.
为了改进从经验时间序列数据重建随机演化方程,我们通过指数算子的幂级数展开推导了克莱默斯 - 莫亚尔算子生成元的完整表示。这种展开对于推导随机微分方程中的不同项是必要的。有了这个算子的完整表示,我们能够将任意阶幂级数展开的有限时间修正分离为带有和不带有克莱默斯 - 莫亚尔系数导数的项。我们得到了一个通过条件矩表示的封闭形式解,它可以直接从具有有限采样间隔的时间序列数据中提取。我们为不连续过程的克莱默斯 - 莫亚尔系数的参数估计和非参数估计提供了所有有限时间修正项,这些修正项可以在随机过程的时间序列分析中通过贝尔多项式轻松实现。通过采样不足的扩散和跳跃扩散过程的示例,我们展示了我们的任意阶有限时间修正的优势及其在从时间序列数据中严格区分扩散和跳跃扩散过程方面的影响。