Suppr超能文献

用于评估石棉暴露及相关吸烟所致呼吸变化的熵分析

Entropy Analysis for the Evaluation of Respiratory Changes Due to Asbestos Exposure and Associated Smoking.

作者信息

Sá Paula M, Castro Hermano A, Lopes Agnaldo J, Melo Pedro L

机构信息

Institute of Biology and Faculty of Engineering, Biomedical Instrumentation Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil.

Oswaldo Cruz Foundation, National School of Public Health, Rio de Janeiro 21040-900, Brazil.

出版信息

Entropy (Basel). 2019 Feb 27;21(3):225. doi: 10.3390/e21030225.

Abstract

Breathing is a complex rhythmic motor act, which is created by integrating different inputs to the respiratory centres. Analysing nonlinear fluctuations in breathing may provide clinically relevant information in patients with complex illnesses, such as asbestosis. We evaluated the effect of exposition to asbestos on the complexity of the respiratory system by investigating the respiratory impedance sample entropy (SampEnZrs) and recurrence period density entropy (RPDEnZrs). Similar analyses were performed by evaluating the airflow pattern sample entropy (SampEnV') and recurrence period density entropy (RPDEnV'). Groups of 34 controls and 34 asbestos-exposed patients were evaluated in the respiratory impedance entropy analysis, while groups of 34 controls and 30 asbestos-exposed patients were investigated in the analysis of airflow entropy. Asbestos exposition introduced a significant reduction of RPDEnV' in non-smoker patients (p < 0.0004), which suggests that the airflow pattern becomes less complex in these patients. Smoker patients also presented a reduction in RPDEnV' (p < 0.05). These finding are consistent with the reduction in respiratory system adaptability to daily life activities observed in these patients. It was observed a significant reduction in SampEnV' in smoker patients in comparison with non-smokers (p < 0.02). Diagnostic accuracy evaluations in the whole group of patients (including non-smokers and smokers) indicated that RPDEnV' might be useful in the diagnosis of respiratory abnormalities in asbestos-exposed patients, showing an accuracy of 72.0%. In specific groups of non-smokers, RPDEnV' also presented adequate accuracy (79.0%), while in smoker patients, SampEnV' and RPDEnV' presented adequate accuracy (70.7% and 70.2%, respectively). Taken together, these results suggest that entropy analysis may provide an early and sensitive functional indicator of interstitial asbestosis.

摘要

呼吸是一种复杂的节律性运动行为,它通过整合对呼吸中枢的不同输入而产生。分析呼吸中的非线性波动可能为患有诸如石棉沉着病等复杂疾病的患者提供临床相关信息。我们通过研究呼吸阻抗样本熵(SampEnZrs)和复发周期密度熵(RPDEnZrs)来评估接触石棉对呼吸系统复杂性的影响。通过评估气流模式样本熵(SampEnV')和复发周期密度熵(RPDEnV')进行了类似分析。在呼吸阻抗熵分析中评估了34名对照组和34名接触石棉患者的组,而在气流熵分析中研究了34名对照组和30名接触石棉患者的组。接触石棉导致非吸烟患者的RPDEnV'显著降低(p < 0.0004),这表明这些患者的气流模式变得不那么复杂。吸烟患者的RPDEnV'也有所降低(p < 0.05)。这些发现与这些患者中观察到的呼吸系统对日常生活活动适应性的降低一致。与非吸烟者相比,观察到吸烟患者的SampEnV'显著降低(p < 0.02)。对整个患者组(包括非吸烟者和吸烟者)的诊断准确性评估表明,RPDEnV'可能有助于诊断接触石棉患者的呼吸异常,准确率为72.0%。在特定的非吸烟组中,RPDEnV'也具有足够的准确性(79.0%),而在吸烟患者中,SampEnV'和RPDEnV'具有足够的准确性(分别为70.7%和70.2%)。综上所述,这些结果表明熵分析可能为间质性石棉沉着病提供早期且敏感的功能指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b60c/7514706/adab1335588f/entropy-21-00225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验