Suppr超能文献

基于散度的风险度量:关于敏感性与扩展的讨论

Divergence-Based Risk Measures: A Discussion on Sensitivities and Extensions.

作者信息

Xu Meng, Angulo José M

机构信息

School of Economics, Sichuan University, Chengdu 610065, China.

Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain.

出版信息

Entropy (Basel). 2019 Jun 27;21(7):634. doi: 10.3390/e21070634.

Abstract

This paper introduces a new family of the convex divergence-based risk measure by specifying ( h , ϕ ) -divergence, corresponding with the dual representation. First, the sensitivity characteristics of the modified divergence risk measure with respect to profit and loss (P&L) and the reference probability in the penalty term are discussed, in view of the certainty equivalent and robust statistics. Secondly, a similar sensitivity property of ( h , ϕ ) -divergence risk measure with respect to P&L is shown, and boundedness by the analytic risk measure is proved. Numerical studies designed for Rényi- and Tsallis-divergence risk measure are provided. This new family integrates a wide spectrum of divergence risk measures and relates to divergence preferences.

摘要

本文通过指定与对偶表示相对应的( h, ϕ ) -散度,引入了一类基于凸散度的新风险度量。首先,从确定性等价和稳健统计的角度,讨论了修正后的散度风险度量相对于损益(P&L)和惩罚项中参考概率的敏感性特征。其次,展示了( h, ϕ ) -散度风险度量相对于P&L的类似敏感性性质,并证明了其受解析风险度量的有界性。提供了针对Rényi散度和Tsallis散度风险度量的数值研究。这个新的类别整合了广泛的散度风险度量,并与散度偏好相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d7d/7515127/7af1811963c2/entropy-21-00634-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验