Suppr超能文献

一种广义相对(, )-熵:几何性质及其在稳健统计推断中的应用

A Generalized Relative (, )-Entropy: Geometric Properties and Applications to Robust Statistical Inference.

作者信息

Ghosh Abhik, Basu Ayanendranath

机构信息

Indian Statistical Institute, Kolkata 700108, India.

出版信息

Entropy (Basel). 2018 May 6;20(5):347. doi: 10.3390/e20050347.

Abstract

Entropy and relative entropy measures play a crucial role in mathematical information theory. The relative entropies are also widely used in statistics under the name of divergence measures which link these two fields of science through the minimum divergence principle. Divergence measures are popular among statisticians as many of the corresponding minimum divergence methods lead to robust inference in the presence of outliers in the observed data; examples include the ϕ -divergence, the density power divergence, the logarithmic density power divergence and the recently developed family of logarithmic super divergence (LSD). In this paper, we will present an alternative information theoretic formulation of the LSD measures as a two-parameter generalization of the relative α -entropy, which we refer to as the general ( α , β ) -entropy. We explore its relation with various other entropies and divergences, which also generates a two-parameter extension of Renyi entropy measure as a by-product. This paper is primarily focused on the geometric properties of the relative ( α , β ) -entropy or the LSD measures; we prove their continuity and convexity in both the arguments along with an extended Pythagorean relation under a power-transformation of the domain space. We also derive a set of sufficient conditions under which the forward and the reverse projections of the relative ( α , β ) -entropy exist and are unique. Finally, we briefly discuss the potential applications of the relative ( α , β ) -entropy or the LSD measures in statistical inference, in particular, for robust parameter estimation and hypothesis testing. Our results on the reverse projection of the relative ( α , β ) -entropy establish, for the first time, the existence and uniqueness of the minimum LSD estimators. Numerical illustrations are also provided for the problem of estimating the binomial parameter.

摘要

熵和相对熵度量在数学信息论中起着至关重要的作用。相对熵也以散度度量的名称在统计学中广泛使用,它通过最小散度原理将这两个科学领域联系起来。散度度量在统计学家中很受欢迎,因为许多相应的最小散度方法在观测数据存在异常值的情况下能导致稳健的推断;例子包括ϕ -散度、密度幂散度、对数密度幂散度以及最近发展起来的对数超散度(LSD)族。在本文中,我们将提出一种替代的信息论公式,将LSD度量表述为相对α -熵的双参数推广,我们将其称为广义(α, β ) -熵。我们探索它与各种其他熵和散度的关系,这也作为副产品产生了Renyi熵度量的双参数扩展。本文主要关注相对(α, β ) -熵或LSD度量的几何性质;我们证明了它们在两个自变量上的连续性和凸性,以及在定义域空间的幂变换下的扩展勾股关系。我们还推导了一组充分条件,在这些条件下相对(α, β ) -熵的正向和反向投影存在且唯一。最后,我们简要讨论相对(α, β ) -熵或LSD度量在统计推断中的潜在应用,特别是对于稳健参数估计和假设检验。我们关于相对(α, β ) -熵反向投影的结果首次确立了最小LSD估计量的存在性和唯一性。还提供了估计二项式参数问题的数值例证。

相似文献

6
Conditional Rényi Divergences and Horse Betting.条件雷尼散度与赛马投注
Entropy (Basel). 2020 Mar 11;22(3):316. doi: 10.3390/e22030316.
9
Formal groups and -entropies.形式群与 - 熵
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.
10
Relative entropies in conformal field theory.共形场论中的相对熵。
Phys Rev Lett. 2014 Aug 1;113(5):051602. doi: 10.1103/PhysRevLett.113.051602. Epub 2014 Jul 29.

本文引用的文献

1
Relations between heat exchange and Rényi divergences.热交换与 Renyi 散度之间的关系。
Phys Rev E. 2018 Apr;97(4-1):042107. doi: 10.1103/PhysRevE.97.042107.
3
The gravity dual of Rényi entropy.Rényi 熵的引力对偶。
Nat Commun. 2016 Aug 12;7:12472. doi: 10.1038/ncomms12472.
4
Nonadditive entropy maximization is inconsistent with Bayesian updating.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052149. doi: 10.1103/PhysRevE.90.052149. Epub 2014 Nov 24.
7
Generalized spin-glass relaxation.
Phys Rev Lett. 2009 Mar 6;102(9):097202. doi: 10.1103/PhysRevLett.102.097202. Epub 2009 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验