Suppr超能文献

关于动力学理论和黑洞中熵力的一则笔记。

A Note on the Entropy Force in Kinetic Theory and Black Holes.

作者信息

Treumann Rudolf A, Baumjohann Wolfgang

机构信息

International Space Science Institute, 3012 Bern, Switzerland.

Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria.

出版信息

Entropy (Basel). 2019 Jul 23;21(7):716. doi: 10.3390/e21070716.

Abstract

The entropy force is the collective effect of inhomogeneity in disorder in a statistical many particle system. We demonstrate its presumable effect on one particular astrophysical object, the black hole. We then derive the kinetic equations of a large system of particles including the entropy force. It adds a collective therefore integral term to the Klimontovich equation for the evolution of the one-particle distribution function. Its integral character transforms the basic one particle kinetic equation into an integro-differential equation already on the elementary level, showing that not only the microscopic forces but the hole system reacts to its evolution of its probability distribution in a holistic way. It also causes a collisionless dissipative term which however is small in the inverse particle number and thus negligible. However it contributes an entropic collisional dissipation term. The latter is defined via the particle correlations but lacks any singularities and thus is large scale. It allows also for the derivation of a kinetic equation for the entropy density in phase space. This turns out to be of same structure as the equation for the phase space density. The entropy density determines itself holistically via the integral entropy force thus providing a self-controlled evolution of entropy in phase space.

摘要

熵力是统计多粒子系统中无序不均匀性的集体效应。我们展示了它对一个特定天体物理对象——黑洞的可能影响。然后我们推导了包含熵力的大粒子系统的动力学方程。它为单粒子分布函数演化的克里蒙托维奇方程添加了一个集体的因而也是积分项。其积分特性在基本层面就将基本的单粒子动力学方程转化为一个积分 - 微分方程,表明不仅微观力,而且整个系统都以整体方式对其概率分布的演化做出反应。它还导致一个无碰撞耗散项,然而该项在粒子数倒数中很小,因此可忽略不计。不过它贡献了一个熵碰撞耗散项。后者通过粒子关联来定义,但没有任何奇点,因此是大规模的。它还允许推导相空间中熵密度的动力学方程。结果表明该方程与相空间密度方程具有相同的结构。熵密度通过积分熵力整体地决定自身,从而在相空间中提供了熵的自控制演化。

相似文献

4
Shannon-entropy-based nonequilibrium "entropic" temperature of a general distribution.基于香农熵的一般分布的非平衡“熵”温度。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031151. doi: 10.1103/PhysRevE.85.031151. Epub 2012 Mar 30.
6
Self-force and radiation reaction in general relativity.广义相对论中的自引力和辐射反应。
Rep Prog Phys. 2019 Jan;82(1):016904. doi: 10.1088/1361-6633/aae552. Epub 2018 Oct 1.
7
Maximum-entropy closures for kinetic theories of neuronal network dynamics.神经网络动力学动力学理论的最大熵闭包
Phys Rev Lett. 2006 May 5;96(17):178101. doi: 10.1103/PhysRevLett.96.178101. Epub 2006 May 2.
9
Universal property of the housekeeping entropy production.普遍的维持性熵产生的性质。
Phys Rev E. 2019 Jan;99(1-1):012136. doi: 10.1103/PhysRevE.99.012136.
10

引用本文的文献

1
Thermodynamics of an Empty Box.空箱的热力学
Entropy (Basel). 2023 Feb 8;25(2):315. doi: 10.3390/e25020315.
2
Entropy and Non-Equilibrium Statistical Mechanics.熵与非平衡统计力学
Entropy (Basel). 2020 Apr 29;22(5):507. doi: 10.3390/e22050507.

本文引用的文献

2
Planckian Interacting Massive Particles as Dark Matter.
Phys Rev Lett. 2016 Mar 11;116(10):101302. doi: 10.1103/PhysRevLett.116.101302. Epub 2016 Mar 10.
3
Causal entropic forces.因果熵力。
Phys Rev Lett. 2013 Apr 19;110(16):168702. doi: 10.1103/PhysRevLett.110.168702.
4
Gibbsian theory of power-law distributions.幂律分布的吉布斯理论
Phys Rev Lett. 2008 Apr 18;100(15):155005. doi: 10.1103/PhysRevLett.100.155005.
5
Thermodynamics of spacetime: The Einstein equation of state.时空的热力学:爱因斯坦状态方程。
Phys Rev Lett. 1995 Aug 14;75(7):1260-1263. doi: 10.1103/PhysRevLett.75.1260.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验