Suppr超能文献

基于多尺度Rényi熵的心跳时间序列线性与非线性特性研究

Investigation of Linear and Nonlinear Properties of a Heartbeat Time Series Using Multiscale Rényi Entropy.

作者信息

Jelinek Herbert F, Cornforth David J, Tarvainen Mika P, Khalaf Kinda

机构信息

Australian School of Advanced Medicine, Macquarie University, Sydney 2109, Australia.

School of Community Health, Charles Sturt University, Albury 2640, Australia.

出版信息

Entropy (Basel). 2019 Jul 25;21(8):727. doi: 10.3390/e21080727.

Abstract

The time series of interbeat intervals of the heart reveals much information about disease and disease progression. An area of intense research has been associated with cardiac autonomic neuropathy (CAN). In this work we have investigated the value of additional information derived from the magnitude, sign and acceleration of the intervals. When quantified using an entropy measure, these time series show statistically significant differences between disease classes of Normal, Early CAN and Definite CAN. In addition, pathophysiological characteristics of heartbeat dynamics provide information not only on the change in the system using the first difference but also the magnitude and direction of the change measured by the second difference (acceleration) with respect to sequence length. These additional measures provide disease categories to be discriminated and could prove useful for non-invasive diagnosis and understanding changes in heart rhythm associated with CAN.

摘要

心脏搏动间期的时间序列揭示了许多有关疾病及疾病进展的信息。一个深入研究的领域与心脏自主神经病变(CAN)相关。在这项工作中,我们研究了从间期的幅度、符号和加速度中获取的额外信息的价值。当使用熵测度进行量化时,这些时间序列在正常、早期CAN和确诊CAN的疾病类别之间显示出具有统计学意义的差异。此外,心跳动力学的病理生理特征不仅提供了关于使用一阶差分的系统变化的信息,还提供了关于相对于序列长度由二阶差分(加速度)测量的变化的幅度和方向的信息。这些额外的测量提供了可区分的疾病类别,并且可能被证明对无创诊断以及理解与CAN相关的心律变化有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0057/7515256/8773393bf76f/entropy-21-00727-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验