Suppr超能文献

带符号社交网络中基于记忆的最小符号调整

Minimum Memory-Based Sign Adjustment in Signed Social Networks.

作者信息

Qi Mingze, Deng Hongzhong, Li Yong

机构信息

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China.

School of Economic and Management, Changsha University, Changsha 410022, China.

出版信息

Entropy (Basel). 2019 Jul 25;21(8):728. doi: 10.3390/e21080728.

Abstract

In social networks comprised of positive (P) and negative (N) symmetric relations, individuals (nodes) will, under the stress of structural balance, alter their relations (links or edges) with their neighbours, either from positive to negative or vice versa. In the real world, individuals can only observe the influence of their adjustments upon the local balance of the network and take this into account when adjusting their relationships. Sometime, their local adjustments may only respond to their immediate neighbourhoods, or centre upon the most important neighbour. To study whether limited memory affects the convergence of signed social networks, we introduce a signed social network model, propose random and minimum memory-based sign adjustment rules, and analyze and compare the impacts of an initial ratio of positive links, rewire probability, network size, neighbor number, and randomness upon structural balance under these rules. The results show that, with an increase of the rewiring probability of the generated network and neighbour number, it is more likely for the networks to globally balance under the minimum memory-based adjustment. While the Newmann-Watts small world model (NW) network becomes dense, the counter-intuitive phenomena emerges that the network will be driven to a global balance, even under the minimum memory-based local sign adjustment, no matter the network size and initial ratio of positive links. This can help to manage and control huge networks with imited resources.

摘要

在由正向(P)和负向(N)对称关系组成的社交网络中,个体(节点)在结构平衡的压力下,会改变与邻居的关系(链接或边),要么从正向变为负向,要么反之。在现实世界中,个体只能观察到自身调整对网络局部平衡的影响,并在调整关系时加以考虑。有时,他们的局部调整可能只针对紧邻的邻居,或者以最重要的邻居为中心。为了研究有限记忆是否会影响带符号社交网络的收敛性,我们引入了一个带符号社交网络模型,提出了基于随机和最小记忆的符号调整规则,并分析和比较了正向链接的初始比例、重新布线概率、网络规模、邻居数量和随机性在这些规则下对结构平衡的影响。结果表明,随着生成网络的重新布线概率和邻居数量的增加,在基于最小记忆的调整下,网络更有可能实现全局平衡。当纽曼 - 瓦特小世界模型(NW)网络变得密集时,会出现违反直觉的现象,即无论网络规模和正向链接的初始比例如何,即使在基于最小记忆的局部符号调整下,网络也会被驱动到全局平衡。这有助于用有限的资源管理和控制大型网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d4/7515257/62521f72416e/entropy-21-00728-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验