Moldoveanu Valeriu, Manolescu Andrei, Gudmundsson Vidar
National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania.
School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland.
Entropy (Basel). 2019 Jul 25;21(8):731. doi: 10.3390/e21080731.
We recall theoretical studies on transient transport through interacting mesoscopic systems. It is shown that a generalized master equation (GME) written and solved in terms of many-body states provides the suitable formal framework to capture both the effects of the Coulomb interaction and electron-photon coupling due to a surrounding single-mode cavity. We outline the derivation of this equation within the Nakajima-Zwanzig formalism and point out technical problems related to its numerical implementation for more realistic systems which can neither be described by non-interacting two-level models nor by a steady-state Markov-Lindblad equation. We first solve the GME for a lattice model and discuss the dynamics of many-body states in a two-dimensional nanowire, the dynamical onset of the current-current correlations in electrostatically coupled parallel quantum dots and transient thermoelectric properties. Secondly, we rely on a continuous model to get the Rabi oscillations of the photocurrent through a double-dot etched in a nanowire and embedded in a quantum cavity. A many-body Markovian version of the GME for cavity-coupled systems is also presented.
我们回顾了关于通过相互作用的介观系统进行瞬态输运的理论研究。结果表明,用多体状态写出并求解的广义主方程(GME)提供了合适的形式框架,以捕捉库仑相互作用以及由于周围单模腔引起的电子 - 光子耦合的影响。我们概述了该方程在中岛 - 兹万齐格形式体系内的推导,并指出了与其实数实现相关的技术问题,对于更现实的系统,这些系统既不能用非相互作用的两能级模型描述,也不能用稳态马尔可夫 - 林德布拉德方程描述。我们首先求解晶格模型的GME,并讨论二维纳米线中多体状态的动力学、静电耦合平行量子点中电流 - 电流关联的动力学起始以及瞬态热电性质。其次,我们依靠一个连续模型来获得通过蚀刻在纳米线中并嵌入量子腔的双量子点的光电流的拉比振荡。还给出了腔耦合系统的GME的多体马尔可夫版本。