Suppr超能文献

区分冻结非平衡态的克劳修斯熵、玻尔兹曼熵和鲍林熵。

Distinguishing between Clausius, Boltzmann and Pauling Entropies of Frozen Non-Equilibrium States.

作者信息

Feistel Rainer

机构信息

Leibniz Institute for Baltic Sea Research IOW, 18119 Rostock, Germany.

出版信息

Entropy (Basel). 2019 Aug 15;21(8):799. doi: 10.3390/e21080799.

Abstract

In conventional textbook thermodynamics, entropy is a quantity that may be calculated by different methods, for example experimentally from heat capacities (following Clausius) or statistically from numbers of microscopic quantum states (following Boltzmann and Planck). It had turned out that these methods do not necessarily provide mutually consistent results, and for equilibrium systems their difference was explained by introducing a residual zero-point entropy (following Pauling), apparently violating the Nernst theorem. At finite temperatures, associated statistical entropies which count microstates that do not contribute to a body's heat capacity, differ systematically from Clausius entropy, and are of particular relevance as measures for metastable, frozen-in non-equilibrium structures and for symbolic information processing (following Shannon). In this paper, it is suggested to consider Clausius, Boltzmann, Pauling and Shannon entropies as distinct, though related, physical quantities with different key properties, in order to avoid confusion by loosely speaking about just "entropy" while actually referring to different kinds of it. For instance, zero-point entropy exclusively belongs to Boltzmann rather than Clausius entropy, while the Nernst theorem holds rigorously for Clausius rather than Boltzmann entropy. The discussion of those terms is underpinned by a brief historical review of the emergence of corresponding fundamental thermodynamic concepts.

摘要

在传统的教科书热力学中,熵是一个可以通过不同方法计算的量,例如通过实验从热容计算(遵循克劳修斯)或从微观量子态的数量进行统计计算(遵循玻尔兹曼和普朗克)。结果表明,这些方法不一定能提供相互一致的结果,对于平衡系统,它们的差异通过引入残余零点熵(遵循鲍林)来解释,这显然违反了能斯特定理。在有限温度下,相关的统计熵计算了对物体热容没有贡献的微观状态,它与克劳修斯熵系统地不同,并且作为亚稳态、冻结的非平衡结构的度量以及符号信息处理(遵循香农)具有特别的相关性。在本文中,建议将克劳修斯熵、玻尔兹曼熵、鲍林熵和香农熵视为不同但相关的物理量,它们具有不同的关键特性,以避免在实际上指的是不同种类的熵时,因笼统地说“熵”而产生混淆。例如,零点熵专门属于玻尔兹曼熵而非克劳修斯熵,而能斯特定理严格适用于克劳修斯熵而非玻尔兹曼熵。对这些术语的讨论以对相应基本热力学概念出现的简要历史回顾为支撑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ed4/7515328/eabaf90b10b0/entropy-21-00799-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验