Misra Avijit, Singh Uttam, Bera Manabendra Nath, Rajagopal A K
Harish-Chandra Research Institute, Allahabad, 211019, India.
Inspire Institute Inc., Alexandria, Virginia 22303, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042161. doi: 10.1103/PhysRevE.92.042161. Epub 2015 Oct 29.
We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.
我们从最大熵原理出发,利用Rényi相对熵,在Rényi熵形式体系中构建了一个完整的量子热力学理论。在建立量子热力学的第一和第二定律时,我们正确地确定了平衡和非平衡情况下可获取的功和热交换。当进入该关系式的所有量都得到适当定义时,自由能(内能减去温度乘以熵)保持不变。利用Rényi相对熵,我们表明这种“形式不变性”甚至在非平衡态也成立,并且在等温过程中具有深刻的操作意义。当Rényi熵参数α趋近于1时,这些结果可归结为吉布斯 - 冯·诺依曼的结果。此外,研究表明,第二定律的卡诺表述的普适性是自由能形式不变性的结果,而自由能的形式不变性又是最大熵原理的结果。此外,基于传统和夹逼Rényi相对熵的数据处理不等式,还证明了作为卡诺表述前身的克劳修斯不等式也成立。因此,我们发现非平衡态的热力学及其与平衡态的偏差共同决定了热力学定律。这是信息论概念在扩展到量子领域时在热力学中的另一个重要体现。我们的工作是朝着构建一个完整的量子热力学理论及相应资源理论迈出的重要一步。