Kesserwani Hassan
Neurology, Flowers Medical Group, Dothan, USA.
Cureus. 2020 Oct 28;12(10):e11218. doi: 10.7759/cureus.11218.
The mathematization of nature is an age-old concept. The Greeks sought harmony in the celestial spheres. The Arab geometers constructed a spherical geometry of the heavens. Later, Galileo Galilei arithmetized kinematics. As the centuries advanced, polymaths like the Dutchman Christiaan Huygens applied more advanced mathematics in order to understand natural phenomena. It was not until the turn of the twentieth century that a more comprehensive mathematical approach to understanding biological phenomena was sought by D'Arcy Wentworth Thompson. This leads us to our current review of the biophysics of visual edge detection. This is an unfolding saga of stunning experimental revelations in unison with an underlying mathematical edifice. The concept of visual contrast is a fundamental idea in order to understand the phenomenon of visual edge detection. We begin with contrast visual testing and the development of frequency tuning curves, which provided an insight into the multi-channel processing of selective spatial frequencies by the visual cortex. The single-cell recordings from the simple cells of the cat visual cortex unfolded the gamma distribution curves of different neuronal firing frequencies for different spatial frequencies. The theoretical construction of the convolution of Gabor wavelets with stimulus intensity goes hand-in-hand with the experimental observation of the separation of simple visual cortical cells into even and odd functions, a spectacular finding. In this review, we march the reader through the mathematical basics and the pathophysiologic correlates. Beginning with a simple Fourier analysis of a square wave, Weber's biophysical law, and the gamma distribution of contrast tuning curves, we gradually introduce Fourier transforms, the uncertainty principle of waveform analysis, the basics of wavelet theory, Gabor elementary signals and transforms, the concepts of coherence, and Weyl group representation theory. Group theory provides the symmetry operations necessary to preserve the fidelity of an image as it travels from the retina and cascades up the visual cortex. Unitary operators that allow a retinal displacement of an image to be reflected by a similar displacement in the visual cortex is also a fundamental principle. Along the way, we encounter the Convolution Theorem of Fourier transforms, which is critical in constructing a visual percept. We intermittently interject relevant clinical data as we unpack the mathematical complexities. The advanced mathematics deployed in the biophysics of vision makes for difficult reading. There is a paucity of step-by-step reviews of this subject. Our approach is heuristic and at the end of this review, one should be able to follow superficially the algorithmic steps in understanding visual edge detection using Gabor filters. Therefore, we will adopt the Socratic method of asking questions and providing answers to help us through the complex web of mathematics. In a nutshell, we will show that a Gabor filter is the inner product of a Gaussian distribution and the wave function. The Fourier transform of the convolution of the Gabor filter and the stimulus intensity function is what is recorded from simple visual cortical cells. This is not a coincidental observation, as nature economizes and utilizes a function that minimizes the uncertainty principle of signal extraction.
自然的数学化是一个古老的概念。希腊人在天体中寻求和谐。阿拉伯几何学家构建了天体的球面几何学。后来,伽利略·伽利雷将运动学算术化。随着几个世纪的发展,像荷兰人克里斯蒂安·惠更斯这样的博学家运用更先进的数学来理解自然现象。直到20世纪之交,达西·温特沃斯·汤普森才寻求一种更全面的数学方法来理解生物现象。这就引出了我们当前对视觉边缘检测生物物理学的综述。这是一个不断展开的传奇故事,有着惊人的实验发现以及与之相伴的基础数学架构。视觉对比度的概念是理解视觉边缘检测现象的一个基本概念。我们从对比度视觉测试和频率调谐曲线的发展开始,这为深入了解视觉皮层对选择性空间频率的多通道处理提供了线索。从猫视觉皮层简单细胞的单细胞记录中,展现出了不同空间频率下不同神经元放电频率的伽马分布曲线。加博尔小波与刺激强度卷积的理论构建与简单视觉皮层细胞分为偶函数和奇函数的实验观察是相辅相成的,这是一个惊人的发现。在这篇综述中,我们带领读者了解数学基础和病理生理相关性。从方波的简单傅里叶分析、韦伯生物物理定律以及对比度调谐曲线的伽马分布开始,我们逐步引入傅里叶变换、波形分析的不确定性原理、小波理论基础、加博尔基本信号和变换、相干性概念以及外尔群表示理论。群论提供了在图像从视网膜向上级联至视觉皮层的过程中保持图像保真度所需的对称操作。允许图像在视网膜上的位移通过视觉皮层中类似的位移得到反映的酉算子也是一个基本原理。在此过程中,我们遇到了傅里叶变换的卷积定理,它在构建视觉感知中至关重要。在剖析数学复杂性的过程中,我们会间歇性地插入相关临床数据。视觉生物物理学中运用的高等数学使得阅读难度较大。关于这个主题的逐步综述很少。我们的方法是启发式的,在这篇综述的结尾,读者应该能够大致跟上使用加博尔滤波器理解视觉边缘检测的算法步骤。因此,我们将采用苏格拉底式的提问和回答方法来帮助我们梳理复杂的数学网络。简而言之,我们将表明加博尔滤波器是高斯分布与波函数的内积。从简单视觉皮层细胞记录到的是加博尔滤波器与刺激强度函数卷积的傅里叶变换。这并非偶然观察,因为自然会节约并利用一种能使信号提取的不确定性原理最小化的函数。