Suppr超能文献

鉴定和表征 BRAF 激酶α-螺旋对 MEK 激酶在 MAPK 信号转导中活性的关键性。

Identification and Characterization of a B-Raf Kinase α-Helix Critical for the Activity of MEK Kinase in MAPK Signaling.

机构信息

Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States.

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

Biochemistry. 2020 Dec 22;59(50):4755-4765. doi: 10.1021/acs.biochem.0c00598. Epub 2020 Dec 3.

Abstract

In the MAPK pathway, an oncogenic V600E mutation in B-Raf kinase causes the enzyme to be constitutively active, leading to aberrantly high phosphorylation levels of its downstream effectors, MEK and ERK kinases. The V600E mutation in B-Raf accounts for more than half of all melanomas and ∼3% of all cancers, and many drugs target the ATP binding site of the enzyme for its inhibition. Because B-Raf can develop resistance against these drugs and such drugs can induce paradoxical activation, drugs that target allosteric sites are needed. To identify other potential drug targets, we generated and kinetically characterized an active form of B-Raf expressed using a bacterial expression system. In doing so, we identified an α-helix on B-Raf, found at the B-Raf-MEK interface, that is critical for their interaction and the oncogenic activity of B-Raf. We assessed the binding between B-Raf mutants and MEK using pull downs and biolayer interferometry and assessed phosphorylation levels of MEK and in cells as well as its downstream target ERK to show that mutating certain residues on this α-helix is detrimental to binding and downstream activity. Our results suggest that this B-Raf α-helix binding site on MEK could be a site to target for drug development to treat B-Raf-induced melanomas.

摘要

在 MAPK 通路中,B-Raf 激酶中的致癌性 V600E 突变使该酶持续激活,导致其下游效应物 MEK 和 ERK 激酶的异常高磷酸化水平。B-Raf 中的 V600E 突变占所有黑色素瘤的一半以上,占所有癌症的 3%左右,许多药物针对该酶的 ATP 结合位点进行抑制。由于 B-Raf 可以对这些药物产生耐药性,并且这些药物可以诱导反常激活,因此需要针对别构位点的药物。为了确定其他潜在的药物靶点,我们使用细菌表达系统表达并对活性形式的 B-Raf 进行了动力学表征。在这样做的过程中,我们在 B-Raf-MEK 界面上发现了 B-Raf 上的一个关键的 α-螺旋,该螺旋对于它们的相互作用和 B-Raf 的致癌活性至关重要。我们使用下拉法和生物层干涉法评估了 B-Raf 突变体与 MEK 之间的结合,并评估了 MEK 和细胞中 ERK 的磷酸化水平,以表明该 α-螺旋上某些残基的突变对结合和下游活性有害。我们的结果表明,该 MEK 上的 B-Raf α-螺旋结合位点可能是一个用于开发药物的靶点,以治疗由 B-Raf 诱导的黑色素瘤。

相似文献

1
Identification and Characterization of a B-Raf Kinase α-Helix Critical for the Activity of MEK Kinase in MAPK Signaling.
Biochemistry. 2020 Dec 22;59(50):4755-4765. doi: 10.1021/acs.biochem.0c00598. Epub 2020 Dec 3.
2
3
BRAF-inhibitor Associated MEK Mutations Increase RAF-Dependent and -Independent Enzymatic Activity.
Mol Cancer Res. 2017 Oct;15(10):1431-1444. doi: 10.1158/1541-7786.MCR-17-0211. Epub 2017 Jun 27.
4
Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation.
Nature. 2010 Dec 16;468(7326):973-7. doi: 10.1038/nature09626. Epub 2010 Nov 24.
5
Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity.
Cancer Res. 2013 Jul 1;73(13):4050-4060. doi: 10.1158/0008-5472.CAN-12-3937. Epub 2013 May 10.
6
A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK.
Nature. 2011 Apr 21;472(7343):366-9. doi: 10.1038/nature09860. Epub 2011 Mar 27.
7
MEK1 mutations confer resistance to MEK and B-RAF inhibition.
Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20411-6. doi: 10.1073/pnas.0905833106. Epub 2009 Nov 13.
9
Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors.
Cancer Cell. 2014 May 12;25(5):697-710. doi: 10.1016/j.ccr.2014.03.011. Epub 2014 Apr 17.

引用本文的文献

3
Mechanism of activation and the rewired network: New drug design concepts.
Med Res Rev. 2022 Mar;42(2):770-799. doi: 10.1002/med.21863. Epub 2021 Oct 25.
4
The mechanism of activation of monomeric B-Raf V600E.
Comput Struct Biotechnol J. 2021 Jun 4;19:3349-3363. doi: 10.1016/j.csbj.2021.06.007. eCollection 2021.

本文引用的文献

1
Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes.
Nature. 2019 Nov;575(7783):545-550. doi: 10.1038/s41586-019-1660-y. Epub 2019 Oct 3.
2
Mechanism of BRAF Activation through Biochemical Characterization of the Recombinant Full-Length Protein.
Chembiochem. 2018 Sep 17;19(18):1988-1997. doi: 10.1002/cbic.201800359. Epub 2018 Aug 17.
3
Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations.
Oncogene. 2018 Jun;37(24):3183-3199. doi: 10.1038/s41388-018-0171-x. Epub 2018 Mar 15.
4
BRAF inhibitors: resistance and the promise of combination treatments for melanoma.
Oncotarget. 2017 Aug 3;8(44):78174-78192. doi: 10.18632/oncotarget.19836. eCollection 2017 Sep 29.
5
RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition.
Nat Commun. 2017 Oct 31;8(1):1211. doi: 10.1038/s41467-017-01274-0.
6
A compendium of ERK targets.
FEBS Lett. 2017 Sep;591(17):2607-2615. doi: 10.1002/1873-3468.12740. Epub 2017 Jul 25.
8
MEK inhibitors and their potential in the treatment of advanced melanoma: the advantages of combination therapy.
Drug Des Devel Ther. 2015 Dec 21;10:43-52. doi: 10.2147/DDDT.S93545. eCollection 2016.
9
New strategies in melanoma: entering the era of combinatorial therapy.
Clin Cancer Res. 2015 Jun 1;21(11):2424-35. doi: 10.1158/1078-0432.CCR-14-1650.
10
Kinase regulation by hydrophobic spine assembly in cancer.
Mol Cell Biol. 2015 Jan;35(1):264-76. doi: 10.1128/MCB.00943-14. Epub 2014 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验