Polo-Cuadrado Efraín, López-Cuellar Lorena, Acosta-Quiroga Karen, Rojas-Peña Cristian, Brito Iván, Cisterna Jonathan, Trilleras Jorge, Alderete Joel B, Duarte Yorley, Gutiérrez Margarita
Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia.
RSC Adv. 2023 Oct 16;13(43):30118-30128. doi: 10.1039/d3ra04874h. eCollection 2023 Oct 11.
In this study, two pyrazolo[3,4-]pyridine derivatives (4a and 4b) were grown using a slow evaporation solution growth technique and characterized by FT-IR, HRMS, H/C NMR spectroscopy, and X-ray crystallography. The 4a and 4b structures crystallized in monoclinic and triclinic systems with space groups 2/ and 1̄, respectively. Theoretical calculations were performed at the DFT/B3LYP level for the optimized geometries. The results were in excellent agreement with the experimental data (spectroscopic and XRD). This investigation encompasses molecular modeling studies including Hirshfeld surface analysis, energy framework calculations, and frontier molecular orbital analysis. Intermolecular interactions within the crystal structures of the compounds were explored through Hirshfeld surface analysis, which revealed the notable presence of hydrogen bonding and hydrophobic interactions. This insight provides valuable information on the structural stability and potential solubility characteristics of these compounds. The research was extended to docking analysis with eight distinct kinases (BRAF, HER2, CSF1R, MEK2, PDGFRA, JAK, AKT1, and AKT2). The results of this analysis demonstrate that both 4a and 4b interact effectively with the kinase-binding sites through a combination of hydrophobic interactions and hydrogen bonding. Compound 4a had the best affinity for proteins; this is related to the fact that the compound is not rigid and has a small size, allowing it to sit well at any binding site. This study contributes to the advancement of kinase inhibitor research and offers potential avenues for the development of new therapeutic agents for cancer treatment.
在本研究中,使用缓慢蒸发溶液生长技术培养了两种吡唑并[3,4 - ]吡啶衍生物(4a和4b),并通过傅里叶变换红外光谱(FT - IR)、高分辨率质谱(HRMS)、氢/碳核磁共振光谱(H/C NMR)和X射线晶体学对其进行了表征。4a和4b的结构分别在单斜晶系和三斜晶系中结晶,空间群分别为2/和1̄。在DFT/B3LYP水平上对优化后的几何结构进行了理论计算。结果与实验数据(光谱和XRD)非常吻合。本研究包括分子建模研究,其中包括Hirshfeld表面分析、能量框架计算和前沿分子轨道分析。通过Hirshfeld表面分析探索了化合物晶体结构中的分子间相互作用,结果表明存在显著的氢键和疏水相互作用。这一见解为这些化合物的结构稳定性和潜在的溶解性特征提供了有价值的信息。该研究扩展到了与八种不同激酶(BRAF、HER2、CSF1R、MEK2、PDGFRA、JAK、AKT1和AKT2)的对接分析。该分析结果表明,4a和4b都通过疏水相互作用和氢键的组合与激酶结合位点有效相互作用。化合物4a对蛋白质具有最佳亲和力;这与该化合物不刚性且尺寸小有关,使其能够很好地位于任何结合位点。本研究有助于激酶抑制剂研究的进展,并为开发用于癌症治疗的新治疗剂提供了潜在途径。