Suppr超能文献

基于模拟听觉神经波动中的跨频率对比度预测言语可懂度

Predicting Speech Intelligibility Based on Across-Frequency Contrast in Simulated Auditory-Nerve Fluctuations.

作者信息

Scheidiger Christoph, Carney Laurel H, Dau Torsten, Zaar Johannes

机构信息

Hearing Systems group, Department of Electrical Engineering, Technical University of Denmark, 2800 Kgs.Lyngby.

Departments of Biomedical Engineering, and Neurobiology and Anatomy, University of Rochester, Rochester, New York 14642.

出版信息

Acta Acust United Acust. 2018 Sep-Oct;104(5):914-917. doi: 10.3813/aaa.919245.

Abstract

The present study proposes a modeling approach for predicting speech intelligibility for normal-hearing (NH) and hearing-impaired (HI) listeners in conditions of stationary and fluctuating interferers. The model combines a non-linear model of the auditory periphery with a decision process that is based on the contrast across characteristic frequency (CF) after modulation analysis in the range of the fundamental frequency of speech. Specifically the short-term across-CF correlation between noisy speech and noise alone is assumed to be inversely related to speech intelligibility. The model provided highly accurate predictions for NH listeners as well as largely plausible effects in response to changes in presentation level. Furthermore, the model could account for some of the main features in the HI data solely by adapting the peripheral model using a simplistic interpretation of the listeners' hearing thresholds. The model's predictive power may be substantially improved by refining the interpretation of the HI listeners' profiles and the model may thus p rovide a valuable basis for quantitatively modeling effects of outer hair-cell and inner hair-cell loss on speech intelligibility.

摘要

本研究提出了一种建模方法,用于预测在存在固定和波动干扰源的情况下,正常听力(NH)和听力受损(HI)听众的言语可懂度。该模型将听觉外周的非线性模型与一个决策过程相结合,该决策过程基于在语音基频范围内进行调制分析后跨特征频率(CF)的对比度。具体而言,假设噪声语音与单独噪声之间的短期跨CF相关性与言语可懂度呈反比关系。该模型为NH听众提供了高度准确的预测,并且在呈现水平变化时也产生了很大程度上合理的效应。此外,该模型仅通过使用对听众听力阈值的简单解释来调整外周模型,就能够解释HI数据中的一些主要特征。通过完善对HI听众听力曲线的解释,该模型的预测能力可能会得到显著提高,因此该模型可能为定量建模外毛细胞和内毛细胞损失对言语可懂度的影响提供有价值的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f75/7709961/095e8aee0f8d/nihms-1052823-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验