Suppr超能文献

基于COCG-FFT算法的离散偶极子近似求解器及其在微波乳腺成像中的应用

A Discrete Dipole Approximation Solver Based on the COCG-FFT Algorithm and Its Application to Microwave Breast Imaging.

作者信息

Hosseinzadegan Samar, Fhager Andreas, Persson Mikael, Meaney Paul

机构信息

Electrical Engineering Department, Chalmers University of Technology, 41296 Gothenburg, Sweden.

The Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Int J Antennas Propag. 2019;2019. doi: 10.1155/2019/9014969. Epub 2019 Jul 17.

Abstract

We introduce the discrete dipole approximation (DDA) for efficiently calculating the two-dimensional electric field distribution for our microwave tomographic breast imaging system. For iterative inverse problems such as microwave tomography, the forward field computation is the time limiting step. In this paper, the two-dimensional algorithm is derived and formulated such that the iterative conjugate orthogonal conjugate gradient (COCG) method can be used for efficiently solving the forward problem. We have also optimized the matrix-vector multiplication step by formulating the problem such that the nondiagonal portion of the matrix used to compute the dipole moments is block-Toeplitz. The computation costs for multiplying the block matrices times a vector can be dramatically accelerated by expanding each Toeplitz matrix to a circulant matrix for which the convolution theorem is applied for fast computation utilizing the fast Fourier transform (FFT). The results demonstrate that this formulation is accurate and efficient. In this work, the computation times for the direct solvers, the iterative solver (COCG), and the iterative solver using the fast Fourier transform (COCG-FFT) are compared with the best performance achieved using the iterative solver (COCG-FFT) in C++. Utilizing this formulation provides a computationally efficient building block for developing a low cost and fast breast imaging system to serve under-resourced populations.

摘要

我们引入离散偶极子近似(DDA)来高效计算我们的微波断层乳腺成像系统的二维电场分布。对于诸如微波断层成像这样的迭代反问题,正向场计算是时间限制步骤。在本文中,推导并制定了二维算法,使得迭代共轭正交共轭梯度(COCG)方法可用于高效求解正向问题。我们还通过将问题表述为用于计算偶极矩的矩阵的非对角部分是块托普利兹矩阵,对矩阵 - 向量乘法步骤进行了优化。通过将每个托普利兹矩阵扩展为循环矩阵,利用快速傅里叶变换(FFT)应用卷积定理进行快速计算,可以显著加速块矩阵与向量相乘的计算成本。结果表明该公式准确且高效。在这项工作中,将直接求解器、迭代求解器(COCG)以及使用快速傅里叶变换的迭代求解器(COCG - FFT)的计算时间与在C++中使用迭代求解器(COCG - FFT)所达到的最佳性能进行了比较。利用这种公式为开发低成本、快速的乳腺成像系统提供了一个计算高效的构建模块,以服务资源匮乏的人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/500a/7709967/89e0b28683f4/nihms-1551357-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验