Kleybolte L, Gewecke P, Sawadsky A, Korobko M, Schnabel R
Institut für Laserphysik und Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
Phys Rev Lett. 2020 Nov 20;125(21):213601. doi: 10.1103/PhysRevLett.125.213601.
Squeezed states of light reduce the signal-normalized photon counting noise of measurements without increasing the light power and enable fundamental research on quantum entanglement in hybrid systems of light and matter. Squeezed states of light have high potential to complement cryogenically cooled sensors, whose thermal noise is suppressed below the quantum noise of light by operation at low temperature. They allow us to reduce the optical heat load on cooled devices by lowering the light power without losing measurement precision. Here, we demonstrate the squeezed-light position sensing of a cryo-cooled micromechanical membrane. The sensing precision is improved by up to 4.8 dB below photon counting noise, limited by optical loss, at a membrane temperature of about 20 K. We prove that realizing a high interference contrast in a cryogenic Michelson interferometer is feasible. Our setup is the first conceptual demonstration towards the envisioned European gravitational-wave detector, the "Einstein telescope," which is planned to use squeezed states of light together with cryo-cooled mirror test masses.
压缩光态在不增加光功率的情况下降低了测量的信号归一化光子计数噪声,并能够对光与物质混合系统中的量子纠缠进行基础研究。压缩光态具有很高的潜力来补充低温冷却传感器,后者通过在低温下运行将热噪声抑制到低于光的量子噪声水平。它们使我们能够通过降低光功率来减少冷却设备上的光学热负荷,同时又不损失测量精度。在此,我们展示了对低温冷却微机械膜的压缩光位置传感。在膜温度约为20K时,受光学损耗限制,传感精度比光子计数噪声提高了高达4.8dB。我们证明了在低温迈克尔逊干涉仪中实现高干涉对比度是可行的。我们的装置是朝着设想中的欧洲引力波探测器“爱因斯坦望远镜”迈出的首个概念性演示,该探测器计划使用压缩光态以及低温冷却的镜面测试质量块。