Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik der Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
Phys Rev Lett. 2010 Jun 25;104(25):251102. doi: 10.1103/PhysRevLett.104.251102. Epub 2010 Jun 22.
Only a few years ago, it was realized that the zero-area Sagnac interferometer topology is able to perform quantum nondemolition measurements of position changes of a mechanical oscillator. Here, we experimentally show that such an interferometer can also be efficiently enhanced by squeezed light. We achieved a nonclassical sensitivity improvement of up to 8.2 dB, limited by optical loss inside our interferometer. Measurements performed directly on our squeezed-light laser output revealed squeezing of 12.7 dB. We show that the sensitivity of a squeezed-light enhanced Sagnac interferometer can surpass the standard quantum limit for a broad spectrum of signal frequencies without the need for filter cavities as required for Michelson interferometers. The Sagnac topology is therefore a powerful option for future gravitational-wave detectors, such as the Einstein Telescope, whose design is currently being studied.
就在几年前,人们意识到零面积萨格纳克干涉仪拓扑结构能够对机械振荡器的位置变化进行量子非破坏测量。在这里,我们实验证明,这种干涉仪也可以通过压缩光有效地增强。我们实现了高达 8.2 dB 的非经典灵敏度提高,这受到我们干涉仪内部光损耗的限制。直接在我们的压缩光激光输出上进行的测量显示出 12.7 dB 的压缩。我们表明,在不需要像 Michelson 干涉仪那样需要滤波器腔的情况下,压缩光增强的萨格纳克干涉仪的灵敏度可以超过广泛信号频率的标准量子极限。因此,萨格纳克拓扑结构是未来引力波探测器的有力选择,例如爱因斯坦望远镜,其设计目前正在研究中。