Suppr超能文献

两亲性树枝状聚合物的合成及其在免疫原性细胞中 siRNA 传递的应用。

Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells.

机构信息

Aix-Marseille Université, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, CNRS, Marseille, France.

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials, China Pharmaceutical University, Nanjing, P. R. China.

出版信息

Nat Protoc. 2021 Jan;16(1):327-351. doi: 10.1038/s41596-020-00418-9. Epub 2020 Dec 4.

Abstract

Using siRNAs to genetically manipulate immune cells is important to both basic immunological studies and therapeutic applications. However, siRNA delivery is challenging because primary immune cells are often sensitive to the delivery materials and generate immune responses. We have recently developed an amphiphilic dendrimer that is able to deliver siRNA to a variety of cells, including primary immune cells. We provide here a protocol for the synthesis of this dendrimer, as well as siRNA delivery to immune cells such as primary T and B cells, natural killer cells, macrophages, and primary microglia. The dendrimer synthesis entails straightforward click coupling followed by an amidation reaction, and the siRNA delivery protocol requires simple mixing of the siRNA and dendrimer in buffer, with subsequent application to the primary immune cells to achieve effective and functional siRNA delivery. This dendrimer-mediated siRNA delivery largely outperforms the standard electroporation technique, opening a new avenue for functional and therapeutic studies of the immune system. The whole protocol encompasses the dendrimer synthesis, which takes 10 days; the primary immune cell preparation, which takes 3-10 d, depending on the tissue source and cell type; the dendrimer-mediated siRNA delivery; and subsequent functional assays, which take an additional 3-6 d.

摘要

使用 siRNA 对免疫细胞进行基因操作对于基础免疫学研究和治疗应用都很重要。然而,siRNA 的递送具有挑战性,因为原代免疫细胞通常对递送材料敏感并产生免疫反应。我们最近开发了一种两亲性树状聚合物,能够将 siRNA 递送至各种细胞,包括原代免疫细胞。这里我们提供了该树状聚合物的合成方案,以及将 siRNA 递送至免疫细胞(如原代 T 细胞和 B 细胞、自然杀伤细胞、巨噬细胞和原代小神经胶质细胞)的方法。树状聚合物的合成需要简单的点击偶联反应,然后进行酰胺化反应,siRNA 递送方案只需将 siRNA 和树状聚合物在缓冲液中简单混合,然后应用于原代免疫细胞,即可实现有效的功能性 siRNA 递送。这种树状聚合物介导的 siRNA 递送在很大程度上优于标准的电穿孔技术,为免疫系统的功能和治疗研究开辟了新途径。整个方案包括树状聚合物的合成,需要 10 天;原代免疫细胞的制备,根据组织来源和细胞类型,需要 3-10 天;树状聚合物介导的 siRNA 递送;以及后续的功能测定,需要再额外 3-6 天。

相似文献

1
Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells.
Nat Protoc. 2021 Jan;16(1):327-351. doi: 10.1038/s41596-020-00418-9. Epub 2020 Dec 4.
2
Efficient and innocuous delivery of small interfering RNA to microglia using an amphiphilic dendrimer nanovector.
Nanomedicine (Lond). 2019 Sep;14(18):2441-2458. doi: 10.2217/nnm-2019-0176. Epub 2019 Aug 28.
3
A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy.
J Am Chem Soc. 2018 Nov 28;140(47):16264-16274. doi: 10.1021/jacs.8b10021. Epub 2018 Nov 1.
4
Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems.
Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11822-7. doi: 10.1002/anie.201406764. Epub 2014 Sep 12.
6
An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo.
Angew Chem Int Ed Engl. 2012 Aug 20;51(34):8478-84. doi: 10.1002/anie.201203920. Epub 2012 Jul 24.
8
Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes.
J Control Release. 2008 Nov 24;132(1):55-64. doi: 10.1016/j.jconrel.2008.07.035. Epub 2008 Aug 5.
10
Surface Engineered Dendrimers in siRNA Delivery and Gene Silencing.
Curr Pharm Des. 2017;23(20):2952-2975. doi: 10.2174/1381612823666170314104619.

引用本文的文献

1
Self-assembling dendrimer nanodrug formulations for decreased hERG-related toxicity and enhanced therapeutic efficacy.
Sci Adv. 2025 Jun 27;11(26):eadu9948. doi: 10.1126/sciadv.adu9948. Epub 2025 Jun 25.
2
Unlocking Dendrimers Future Potential for Brain-Specific Drug Delivery in Cerebroanoreach.
Recent Adv Drug Deliv Formul. 2025;19(1):16-24. doi: 10.2174/0126673878303735240906065735.
3
Emerging dendrimer-based RNA delivery strategies.
Nanomedicine (Lond). 2025 Apr;20(8):835-849. doi: 10.1080/17435889.2025.2485023. Epub 2025 Apr 3.
4
Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.
Signal Transduct Target Ther. 2025 Mar 10;10(1):73. doi: 10.1038/s41392-024-02112-8.
5
Adaptive Synthesis, Supramolecular Behavior, and Biological Properties of Amphiphilic Carbosilane-Phosphonium Dendrons with Tunable Structure.
Biomacromolecules. 2024 Dec 9;25(12):7799-7813. doi: 10.1021/acs.biomac.4c01092. Epub 2024 Nov 11.
6
Unlocking Transplant Tolerance with Biomaterials.
Adv Healthc Mater. 2025 Feb;14(5):e2400965. doi: 10.1002/adhm.202400965. Epub 2024 Jul 3.
7
Progress and harmonization of gene editing to treat human diseases: Proceeding of COST Action CA21113 GenE-HumDi.
Mol Ther Nucleic Acids. 2023 Oct 29;34:102066. doi: 10.1016/j.omtn.2023.102066. eCollection 2023 Dec 12.
8
Engineering siRNA therapeutics: challenges and strategies.
J Nanobiotechnology. 2023 Oct 18;21(1):381. doi: 10.1186/s12951-023-02147-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验