Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215000, China.
Redox Biol. 2021 Jan;38:101813. doi: 10.1016/j.redox.2020.101813. Epub 2020 Nov 25.
Diabetic kidney disease is known as a major cause of chronic kidney disease and end stage renal disease. Polysulfides, a class of chemical agents with a chain of sulfur atoms, are found to confer renal protective effects in acute kidney injury. However, whether a polysulfide donor, sodium tetrasulfide (NaS), confers protective effects against diabetic nephropathy remains unclear. Our results showed that NaS treatment ameliorated renal dysfunctional and histological damage in diabetic kidneys through inhibiting the overproduction of inflammation cytokine and reactive oxygen species (ROS), as well as attenuating renal fibrosis and renal cell apoptosis. Additionally, the upregulated phosphorylation and acetylation levels of p65 nuclear factor κB (p65 NF-κB) and signal transducer and activator of transcription 3 (STAT3) in diabetic nephropathy were abrogated by NaS in a sirtuin-1 (SIRT1)-dependent manner. In renal tubular epithelial cells, NaS directly sulfhydrated SIRT1 at two conserved CXXC domains (Cys371/374; Cys395/398), then induced dephosphorylation and deacetylation of its targeted proteins including p65 NF-κB and STAT3, thereby reducing high glucose (HG)-caused oxidative stress, cell apoptosis, inflammation response and epithelial-to-mesenchymal transition (EMT) progression. Most importantly, inactivation of SIRT1 by a specific inhibitor EX-527, small interfering RNA (siRNA), a de-sulfhydration reagent dithiothreitol (DTT), or mutation of Cys371/374 and Cys395/398 sites at SIRT1 abolished the protective effects of NaS on diabetic kidney insulting. These results reveal that polysulfides may attenuate diabetic renal lesions via inactivation of p65 NF-κB and STAT3 phosphorylation/acetylation through sulfhydrating SIRT1.
糖尿病肾病是慢性肾脏病和终末期肾病的主要病因之一。多硫化物是一类含有硫原子链的化学物质,已被证明在急性肾损伤中具有肾脏保护作用。然而,多硫化物供体——连四硫酸钠(NaS)是否对糖尿病肾病具有保护作用尚不清楚。我们的研究结果表明,NaS 通过抑制炎症细胞因子和活性氧(ROS)的过度产生,以及减轻肾纤维化和肾细胞凋亡,改善了糖尿病肾脏的肾功能障碍和组织学损伤。此外,NaS 通过依赖于 SIRT1 的方式,减弱了糖尿病肾病中 p65 核因子 κB(p65 NF-κB)和信号转导子和转录激活子 3(STAT3)的磷酸化和乙酰化水平的上调。在肾小管上皮细胞中,NaS 直接在两个保守的CXXC 结构域(Cys371/374;Cys395/398)上硫醇化 SIRT1,然后诱导其靶向蛋白(包括 p65 NF-κB 和 STAT3)去磷酸化和去乙酰化,从而减轻高糖(HG)引起的氧化应激、细胞凋亡、炎症反应和上皮间质转化(EMT)进展。最重要的是,通过特异性抑制剂 EX-527、小干扰 RNA(siRNA)、脱巯基试剂二硫苏糖醇(DTT)或 SIRT1 的 Cys371/374 和 Cys395/398 位点的突变使 SIRT1 失活,消除了 NaS 对糖尿病肾脏损伤的保护作用。这些结果表明,多硫化物可能通过硫醇化 SIRT1 使 p65 NF-κB 和 STAT3 的磷酸化/乙酰化失活,从而减轻糖尿病肾脏病变。
Diabetes. 2014-3-7
Curr Hypertens Rev. 2016
Endocr Metab Immune Disord Drug Targets. 2021
J Nanobiotechnology. 2025-7-28
Int J Chron Obstruct Pulmon Dis. 2025-5-28
Mol Cell Biochem. 2025-5-13
J Nanobiotechnology. 2025-5-13