Suppr超能文献

声门下狭窄位置影响呼吸功。

Subglottic Stenosis Position Affects Work of Breathing.

机构信息

University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A.

Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A.

出版信息

Laryngoscope. 2021 Apr;131(4):E1220-E1226. doi: 10.1002/lary.29169. Epub 2020 Oct 14.

Abstract

OBJECTIVES

Subglottic stenosis (SGS) is the most common type of laryngeal stenosis in neonates. SGS severity is currently graded based on percent area of obstruction (%AO) via the Myer-Cotton grading scale. However, patients with similar %AO can have widely different clinical courses. Computational fluid dynamics (CFD) based on patient-specific imaging can quantify the relationship between airway geometry and flow dynamics. We investigated the effect of %AO and axial position of SGS on work of breathing (WOB) in neonates using magnetic resonance imaging.

METHODS

High-resolution ultrashort echo-time MRI of the chest and airway was obtained in three neonatal patients with no suspected airway abnormalities; images were segmented to construct three-dimensional (3D) models of the neonatal airways. These models were then modified with virtual SGSs of varying %AO and axial positioning. CFD simulations of peak inspiratory flow were used to calculate patient-specific WOB in nonstenotic and artificially stenosed airway models.

RESULTS

CFD simulations demonstrated a relationship between stenosis geometry and WOB increase. WOB rapidly increased with %AO greater than about 70%. Changes in axial position could also increase WOB by approximately the same amount as a 10% increase in %AO. Increased WOB was particularly pronounced when the SGS lumen was misaligned with the glottic jet.

CONCLUSION

The results indicate a strong, predictable relationship between WOB and axial position of the stenotic lumen relative to the glottis, which has not been previously reported. These findings may lead to precision diagnosis and treatment prediction tools in individual patients.

LEVEL OF EVIDENCE

4 Laryngoscope, 131:E1220-E1226, 2021.

摘要

目的

声门下狭窄(SGS)是新生儿最常见的喉狭窄类型。目前,SGS 的严重程度是根据 Myer-Cotton 分级量表通过阻塞百分比(%AO)进行分级的。然而,具有相似%AO的患者可能具有非常不同的临床病程。基于患者特定成像的计算流体动力学(CFD)可以定量评估气道几何形状和流动动力学之间的关系。我们使用磁共振成像研究了 SGS 的%AO 和轴向位置对新生儿呼吸功(WOB)的影响。

方法

对 3 例无疑似气道异常的新生儿进行了胸部和气道高分辨率超短回波时间 MRI 检查;对图像进行分割,构建新生儿气道的三维(3D)模型。然后,使用不同%AO 和轴向定位的虚拟 SGS 对这些模型进行修改。使用峰值吸气流量的 CFD 模拟计算非狭窄和人工狭窄气道模型中的患者特定 WOB。

结果

CFD 模拟表明狭窄几何形状与 WOB 增加之间存在关系。当%AO 大于约 70%时,WOB 迅速增加。轴向位置的变化也可以使 WOB 增加大约与 10%的%AO 增加相同的量。当 SGS 管腔与声门射流不对准时,WOB 的增加尤为明显。

结论

结果表明,WOB 与狭窄管腔相对于声门的轴向位置之间存在强烈、可预测的关系,这是以前未曾报道过的。这些发现可能导致在个体患者中实现精确诊断和治疗预测工具。

证据水平

4 级喉镜,131:E1220-E1226,2021 年。

相似文献

1
Subglottic Stenosis Position Affects Work of Breathing.
Laryngoscope. 2021 Apr;131(4):E1220-E1226. doi: 10.1002/lary.29169. Epub 2020 Oct 14.
2
Predicting tracheal work of breathing in neonates based on radiological and pulmonary measurements.
J Appl Physiol (1985). 2022 Oct 1;133(4):893-901. doi: 10.1152/japplphysiol.00399.2022. Epub 2022 Sep 1.
3
Increased Work of Breathing due to Tracheomalacia in Neonates.
Ann Am Thorac Soc. 2020 Oct;17(10):1247-1256. doi: 10.1513/AnnalsATS.202002-162OC.
4
Relationship between degree of obstruction and airflow limitation in subglottic stenosis.
Laryngoscope. 2018 Jul;128(7):1551-1557. doi: 10.1002/lary.27006. Epub 2017 Nov 24.
5
Quantitative Evaluation of Subglottic Stenosis Using Ultrashort Echo Time MRI in a Rabbit Model.
Laryngoscope. 2021 Jun;131(6):E1971-E1979. doi: 10.1002/lary.29363. Epub 2021 Jan 5.
6
Modeling flow in a compromised pediatric airway breathing air and heliox.
Laryngoscope. 2008 Dec;118(12):2205-11. doi: 10.1097/MLG.0b013e3181856051.
7
Modeling flow in a compromised pediatric airway breathing air and heliox.
Laryngoscope. 2009 Jan;119(1):145-51. doi: 10.1002/lary.20015.
8
Quantitative assessment of the upper airway in infants and children with subglottic stenosis.
Laryngoscope. 2016 May;126(5):1225-31. doi: 10.1002/lary.25482. Epub 2015 Jul 30.
9
The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
Comput Biol Med. 2020 Dec;127:104099. doi: 10.1016/j.compbiomed.2020.104099. Epub 2020 Nov 1.
10
Planning human upper airway surgery using computational fluid dynamics.
J Biomech. 2013 Aug 9;46(12):1979-86. doi: 10.1016/j.jbiomech.2013.06.016. Epub 2013 Jul 12.

引用本文的文献

1
Investigating Risk Factors for Laryngotracheal Reconstruction and Assessing Postoperative Management.
Cureus. 2025 Jan 26;17(1):e78001. doi: 10.7759/cureus.78001. eCollection 2025 Jan.
4
Effect of cartilaginous rings in tracheal flow with stenosis.
BMC Biomed Eng. 2023 Jun 1;5(1):5. doi: 10.1186/s42490-023-00068-4.
5
Predicting tracheal work of breathing in neonates based on radiological and pulmonary measurements.
J Appl Physiol (1985). 2022 Oct 1;133(4):893-901. doi: 10.1152/japplphysiol.00399.2022. Epub 2022 Sep 1.
6
Imaging in neonatal respiratory disease.
Paediatr Respir Rev. 2022 Sep;43:44-52. doi: 10.1016/j.prrv.2021.12.002. Epub 2021 Dec 23.
7
Monitoring Adult Subglottic Stenosis With Spirometry and Dyspnea Index: A Novel Approach.
Otolaryngol Head Neck Surg. 2022 Sep;167(3):517-523. doi: 10.1177/01945998211060817. Epub 2021 Nov 23.
8
Neonates With Tracheomalacia Generate Auto-Positive End-Expiratory Pressure via Glottis Closure.
Chest. 2021 Dec;160(6):2168-2177. doi: 10.1016/j.chest.2021.06.021. Epub 2021 Jun 19.
9
Central airway issues in bronchopulmonary dysplasia.
Pediatr Pulmonol. 2021 Nov;56(11):3518-3526. doi: 10.1002/ppul.25417. Epub 2021 Apr 24.
10
The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
Comput Biol Med. 2020 Dec;127:104099. doi: 10.1016/j.compbiomed.2020.104099. Epub 2020 Nov 1.

本文引用的文献

1
Ultrashort Echo-Time MRI for the Assessment of Tracheomalacia in Neonates.
Chest. 2020 Mar;157(3):595-602. doi: 10.1016/j.chest.2019.11.034. Epub 2019 Dec 17.
2
Assessing Changes in Airflow and Energy Loss in a Progressive Tracheal Compression Before and After Surgical Correction.
Ann Biomed Eng. 2020 Feb;48(2):822-833. doi: 10.1007/s10439-019-02410-1. Epub 2019 Dec 2.
3
Elevated lung volumes in neonates with bronchopulmonary dysplasia measured via MRI.
Pediatr Pulmonol. 2019 Aug;54(8):1311-1318. doi: 10.1002/ppul.24378. Epub 2019 May 27.
4
Bronchoscopy in neonates with severe bronchopulmonary dysplasia in the NICU.
J Perinatol. 2019 Feb;39(2):263-268. doi: 10.1038/s41372-018-0280-y. Epub 2018 Dec 5.
6
Relationship between degree of obstruction and airflow limitation in subglottic stenosis.
Laryngoscope. 2018 Jul;128(7):1551-1557. doi: 10.1002/lary.27006. Epub 2017 Nov 24.
7
Tracheobronchomalacia Is Associated with Increased Morbidity in Bronchopulmonary Dysplasia.
Ann Am Thorac Soc. 2017 Sep 1;14(9):1428-35. doi: 10.1513/AnnalsATS.201702-178OC. Epub 2017 Jun 16.
8
Computational fluid dynamics benchmark dataset of airflow in tracheas.
Data Brief. 2016 Nov 28;10:101-107. doi: 10.1016/j.dib.2016.11.091. eCollection 2017 Feb.
9
The effects of curvature and constriction on airflow and energy loss in pathological tracheas.
Respir Physiol Neurobiol. 2016 Dec;234:69-78. doi: 10.1016/j.resp.2016.09.002. Epub 2016 Sep 13.
10
Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system.
J Magn Reson Imaging. 2017 Feb;45(2):463-471. doi: 10.1002/jmri.25394. Epub 2016 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验