School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
Plant J. 2021 Mar;105(6):1449-1458. doi: 10.1111/tpj.15120. Epub 2020 Dec 30.
The tricarboxylic acid (TCA) cycle is one of the most important metabolic pathways in nature. Oxygenic photoautotrophic bacteria, cyanobacteria, have an unusual TCA cycle. The TCA cycle in cyanobacteria contains two unique enzymes that are not part of the TCA cycle in other organisms. In recent years, sustainable metabolite production from carbon dioxide using cyanobacteria has been looked at as a means to reduce the environmental burden of this gas. Among cyanobacteria, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) is an optimal host for sustainable metabolite production. Recently, metabolite production using the TCA cycle in Synechocystis 6803 has been carried out. Previous studies revealed that the branch point of the oxidative and reductive TCA cycles, oxaloacetate metabolism, plays a key role in metabolite production. However, the biochemical mechanisms regulating oxaloacetate metabolism in Synechocystis 6803 are poorly understood. Concentrations of oxaloacetate in Synechocystis 6803 are extremely low, such that in vivo analysis of oxaloacetate metabolism does not seem realistic. Therefore, using purified enzymes, we reconstituted oxaloacetate metabolism in Synechocystis 6803 in vitro to reveal the regulatory mechanisms involved. Reconstitution of oxaloacetate metabolism revealed that pH, Mg and phosphoenolpyruvate are important factors affecting the conversion of oxaloacetate in the TCA cycle. Biochemical analyses of the enzymes involved in oxaloacetate metabolism in this and previous studies revealed the biochemical mechanisms underlying the effects of these factors on oxaloacetate conversion. In addition, we clarified the function of two l-malate dehydrogenase isozymes in oxaloacetate metabolism. These findings serve as a basis for various applications of the cyanobacterial TCA cycle.
三羧酸 (TCA) 循环是自然界中最重要的代谢途径之一。产氧光合作用细菌——蓝细菌,具有一种不寻常的 TCA 循环。蓝细菌的 TCA 循环包含两种独特的酶,这些酶不是其他生物体 TCA 循环的一部分。近年来,利用蓝细菌从二氧化碳中生产可持续代谢物已被视为减少这种气体环境负担的一种手段。在蓝细菌中,单细胞蓝细菌集胞藻 PCC 6803(集胞藻 6803)是可持续代谢物生产的最佳宿主。最近,利用集胞藻 6803 的 TCA 循环进行了代谢物生产。先前的研究表明,氧化和还原 TCA 循环的分支点,即草酰乙酸代谢,在代谢物生产中起着关键作用。然而,集胞藻 6803 中草酰乙酸代谢的生化调节机制还知之甚少。集胞藻 6803 中的草酰乙酸浓度极低,因此体内分析草酰乙酸代谢似乎不切实际。因此,我们使用纯化的酶在体外重建了集胞藻 6803 中的草酰乙酸代谢,以揭示所涉及的调节机制。草酰乙酸代谢的重建表明,pH 值、Mg 和磷酸烯醇丙酮酸是影响 TCA 循环中草酰乙酸转化的重要因素。对草酰乙酸代谢相关酶的生化分析揭示了这些因素对草酰乙酸转化影响的生化机制。此外,我们还阐明了两种 l-苹果酸脱氢酶同工酶在草酰乙酸代谢中的功能。这些发现为蓝细菌 TCA 循环的各种应用提供了基础。