Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain.
Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain.
J Chem Inf Model. 2020 Dec 28;60(12):6523-6531. doi: 10.1021/acs.jcim.0c01177. Epub 2020 Dec 6.
Protein folding evolves by exploring the conformational space with a subtle balance between enthalpy and entropy changes which eventually leads to a decrease of free energy upon reaching the folded structure. A complete understanding of this process requires, therefore, a deep insight into both contributions to free energy. In this work, we clarify the role of entropy in favoring the stabilization of folded structures in polyalanine peptides with up to 12 residues. We use a novel method referred to as K2V that allows us to obtain the potential-energy landscapes in terms of residue conformations extracted from molecular dynamics simulations at conformational equilibrium and yields folding thermodynamic magnitudes, which are in agreement with the experimental data available. Our results demonstrate that the folded structures of the larger polyalanine chains are stabilized with respect to the folded structures of the shorter chains by both an energetic contribution coming from the formation of the intramolecular hydrogen bonds and an entropic contribution coming from an increase of the entropy of the solvent with approximate weights of 60 and 40%, respectively, thus unveiling a key piece in the puzzle of protein folding. In addition, the ability of the K2V method to provide the enthalpic and entropic contributions for individual residues along the peptide chain makes it clear that the energetic and entropic stabilizations are basically governed by the nearest neighbor residue conformations, with the folding propensity being rationalized in terms of triads of residues.
蛋白质折叠通过在焓和熵变化之间的微妙平衡中探索构象空间来进化,这最终导致在达到折叠结构时自由能降低。因此,对这个过程的完整理解需要深入了解自由能的两个贡献。在这项工作中,我们澄清了熵在稳定多达 12 个残基的聚丙氨酸肽的折叠结构中的作用。我们使用一种称为 K2V 的新方法,该方法允许我们根据构象平衡时的分子动力学模拟中提取的残基构象来获得势能景观,并产生折叠热力学量,这些量与可用的实验数据一致。我们的结果表明,较大的聚丙氨酸链的折叠结构相对于较短链的折叠结构得到了稳定,这是由形成分子内氢键的能量贡献和溶剂熵增加的熵贡献共同作用的结果,其权重分别约为 60%和 40%,从而揭示了蛋白质折叠之谜的一个关键部分。此外,K2V 方法能够为肽链上的各个残基提供焓和熵贡献,这清楚地表明,能量和熵的稳定基本上由最近邻残基构象控制,折叠倾向可以根据残基三联体来合理化。