Suppr超能文献

一种基于围绕中心点划分模型的膝关节运动障碍新聚类方法。

A New Clustering Method for Knee Movement Impairments using Partitioning Around Medoids Model.

作者信息

Reza Farazdaghi Mohammad, Razeghi Mohsen, Sobhani Sobhan, Raeisi Shahraki Hadi, Motealleh Alireza

机构信息

Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.

出版信息

Iran J Med Sci. 2020 Nov;45(6):451-462. doi: 10.30476/ijms.2019.82033.

Abstract

BACKGROUND

The movement system impairment (MSI) model is a clinical model that can be used for the classification, diagnosis, and treatment of knee impairments. By using the partitioning around medoids (PAM) clustering method, patients can be easily clustered in homogeneous groups through the determination of the most discriminative variables. The present study aimed to reduce the number of clinical examination variables, determine the important variables, and simplify the MSI model using the PAM clustering method.

METHODS

The present cross-sectional study was performed in Shiraz, Iran, during February-December 2018. A total of 209 patients with knee pain were recruited. Patients' knee, femoral and tibial movement impairments, and the perceived pain level were examined in quiet standing, sitting, walking, partial squatting, single-leg stance (both sides), sit-to-stand transfer, and stair ambulation. The tests were repeated after correction for impairments. Both the pain pattern and the types of impairment were subsequently used in the PAM clustering analysis.

RESULTS

PAM clustering analysis categorized the patients in two main clusters (valgus and non-valgus) based on the presence or absence of valgus impairment. Secondary analysis of the valgus cluster identified two sub-clusters based on the presence of hypomobility. Analysis of the non-valgus cluster showed four sub-clusters with different characteristics. PAM clustering organized important variables in each analysis and showed that only 23 out of the 41 variables were essential in the sub-clustering of patients with knee pain.

CONCLUSION

A new direct knee examination method is introduced for the organization of important discriminative tests, which requires fewer clinical examination variables.

摘要

背景

运动系统损伤(MSI)模型是一种可用于膝关节损伤分类、诊断和治疗的临床模型。通过使用围绕中心点划分(PAM)聚类方法,可通过确定最具区分性的变量将患者轻松聚类到同质组中。本研究旨在减少临床检查变量的数量,确定重要变量,并使用PAM聚类方法简化MSI模型。

方法

本横断面研究于2018年2月至12月在伊朗设拉子进行。共招募了209名膝关节疼痛患者。在安静站立、坐着、行走、半蹲、单腿站立(双侧)、从坐到站转移以及上下楼梯时检查患者的膝关节、股骨和胫骨运动损伤以及疼痛感知水平。在对损伤进行矫正后重复测试。随后将疼痛模式和损伤类型用于PAM聚类分析。

结果

PAM聚类分析根据是否存在外翻损伤将患者分为两个主要聚类(外翻和非外翻)。对外翻聚类的二次分析根据活动度降低的情况确定了两个子聚类。对非外翻聚类的分析显示有四个具有不同特征的子聚类。PAM聚类在每次分析中整理了重要变量,并表明在41个变量中只有23个对于膝关节疼痛患者的子聚类至关重要。

结论

引入了一种新的直接膝关节检查方法来组织重要的鉴别测试,该方法所需的临床检查变量较少。

相似文献

1
A New Clustering Method for Knee Movement Impairments using Partitioning Around Medoids Model.
Iran J Med Sci. 2020 Nov;45(6):451-462. doi: 10.30476/ijms.2019.82033.
2
Knee impairments: Comparison between new clinical classification by cluster analysis and movement system impairment model.
J Bodyw Mov Ther. 2022 Apr;30:210-220. doi: 10.1016/j.jbmt.2022.02.003. Epub 2022 Feb 22.
4
The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB.
Accid Anal Prev. 2018 Apr;113:1-11. doi: 10.1016/j.aap.2018.01.010. Epub 2018 Jan 30.
7
Predicting Psychotic Relapse in Schizophrenia With Mobile Sensor Data: Routine Cluster Analysis.
JMIR Mhealth Uhealth. 2022 Apr 11;10(4):e31006. doi: 10.2196/31006.
8
Validation of the movement system impairment-based classification in patients with knee pain.
Man Ther. 2016 Sep;25:19-26. doi: 10.1016/j.math.2016.05.333. Epub 2016 Jun 2.
10

引用本文的文献

2
Clustering the Economic Status via Partitioning around Medoid and Its Association with Common Non-communicable Diseases.
Iran J Med Sci. 2024 Nov 1;49(11):699-706. doi: 10.30476/ijms.2023.100513.3275. eCollection 2024 Nov.

本文引用的文献

1
Inter-rater reliability of the McKenzie System of Mechanical Diagnosis and Therapy in the examination of the knee.
J Man Manip Ther. 2017 May;25(2):83-90. doi: 10.1080/10669817.2016.1229396. Epub 2016 Sep 7.
3
Validation of the movement system impairment-based classification in patients with knee pain.
Man Ther. 2016 Sep;25:19-26. doi: 10.1016/j.math.2016.05.333. Epub 2016 Jun 2.
5
Trunk biomechanics and its association with hip and knee kinematics in patients with and without patellofemoral pain.
Man Ther. 2015 Feb;20(1):189-93. doi: 10.1016/j.math.2014.08.013. Epub 2014 Sep 9.
7
Individualized physiotherapy in the treatment of patellofemoral pain.
Physiother Res Int. 2015 Mar;20(1):22-36. doi: 10.1002/pri.1593. Epub 2014 May 22.
8
What's in a name? Using movement system diagnoses versus pathoanatomic diagnoses.
J Orthop Sports Phys Ther. 2013 May;43(5):280-3. doi: 10.2519/jospt.2013.0104. Epub 2013 Apr 30.
9
The reliability and validity of physiotherapist visual rating of dynamic pelvis and knee alignment in young athletes.
Phys Ther Sport. 2013 Aug;14(3):168-74. doi: 10.1016/j.ptsp.2012.07.001. Epub 2012 Oct 26.
10
The effects of movement pattern modification on lower extremity kinematics and pain in women with patellofemoral pain.
J Orthop Sports Phys Ther. 2012 Dec;42(12):1017-24. doi: 10.2519/jospt.2012.4231. Epub 2012 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验