Department of Statistics, Rice University, Houston, TX, United States.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States.
JMIR Mhealth Uhealth. 2022 Apr 11;10(4):e31006. doi: 10.2196/31006.
Behavioral representations obtained from mobile sensing data can be helpful for the prediction of an oncoming psychotic relapse in patients with schizophrenia and the delivery of timely interventions to mitigate such relapse.
In this study, we aim to develop clustering models to obtain behavioral representations from continuous multimodal mobile sensing data for relapse prediction tasks. The identified clusters can represent different routine behavioral trends related to daily living of patients and atypical behavioral trends associated with impending relapse.
We used the mobile sensing data obtained from the CrossCheck project for our analysis. Continuous data from six different mobile sensing-based modalities (ambient light, sound, conversation, acceleration, etc) obtained from 63 patients with schizophrenia, each monitored for up to a year, were used for the clustering models and relapse prediction evaluation. Two clustering models, Gaussian mixture model (GMM) and partition around medoids (PAM), were used to obtain behavioral representations from the mobile sensing data. These models have different notions of similarity between behaviors as represented by the mobile sensing data, and thus, provide different behavioral characterizations. The features obtained from the clustering models were used to train and evaluate a personalized relapse prediction model using balanced random forest. The personalization was performed by identifying optimal features for a given patient based on a personalization subset consisting of other patients of similar age.
The clusters identified using the GMM and PAM models were found to represent different behavioral patterns (such as clusters representing sedentary days, active days but with low communication, etc). Although GMM-based models better characterized routine behaviors by discovering dense clusters with low cluster spread, some other identified clusters had a larger cluster spread, likely indicating heterogeneous behavioral characterizations. On the other hand, PAM model-based clusters had lower variability of cluster spread, indicating more homogeneous behavioral characterization in the obtained clusters. Significant changes near the relapse periods were observed in the obtained behavioral representation features from the clustering models. The clustering model-based features, together with other features characterizing the mobile sensing data, resulted in an F2 score of 0.23 for the relapse prediction task in a leave-one-patient-out evaluation setting. The obtained F2 score was significantly higher than that of a random classification baseline with an average F2 score of 0.042.
Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the daily mobile sensing data may help discover routine and atypical behavioral trends. In this study, we used GMM-based and PAM-based cluster models to obtain behavioral trends in patients with schizophrenia. The features derived from the cluster models were found to be predictive for detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful in enabling timely interventions.
从移动感知数据中获得的行为表示可有助于预测精神分裂症患者即将出现的精神病复发,并及时进行干预以减轻这种复发。
本研究旨在开发聚类模型,以便从连续的多模态移动感知数据中获取用于复发预测任务的行为表示。所识别的聚类可以代表与患者日常生活相关的不同常规行为趋势和与即将到来的复发相关的异常行为趋势。
我们使用来自 CrossCheck 项目的移动感知数据进行分析。从 63 名精神分裂症患者(每个患者的监测时间长达一年)获得的六种不同基于移动感知的模态(环境光、声音、对话、加速度等)的连续数据用于聚类模型和复发预测评估。使用高斯混合模型(GMM)和划分均值聚类(PAM)两种聚类模型从移动感知数据中获取行为表示。这些模型对移动感知数据表示的行为之间的相似性有不同的概念,因此提供了不同的行为特征。从聚类模型获得的特征用于使用平衡随机森林训练和评估个性化复发预测模型。个性化是通过基于包含相似年龄患者的个性化子集来识别给定患者的最佳特征来实现的。
使用 GMM 和 PAM 模型识别的聚类被发现代表不同的行为模式(例如,代表安静日、活跃日但交流较少的聚类等)。尽管基于 GMM 的模型通过发现具有低聚类扩展的密集聚类更好地描述了常规行为,但其他一些识别出的聚类具有更大的聚类扩展,可能表明行为特征具有异质性。另一方面,基于 PAM 模型的聚类具有更低的聚类扩展变异性,表明在获得的聚类中具有更同质的行为特征。在聚类模型中观察到与复发期临近的行为表示特征发生了显著变化。聚类模型特征与其他描述移动感知数据的特征一起,在离开一个患者的评估设置中,对复发预测任务的 F2 分数达到 0.23。获得的 F2 分数明显高于平均 F2 分数为 0.042 的随机分类基线。
移动感知可以使用不同的感知模式捕获行为趋势。对日常移动感知数据进行聚类可能有助于发现常规和异常行为趋势。在本研究中,我们使用基于 GMM 和 PAM 的聚类模型来获取精神分裂症患者的行为趋势。从聚类模型中得到的特征被发现可用于检测即将发生的精神病复发。这种复发预测模型有助于及时进行干预。