Suppr超能文献

剪切应力增加前列腺癌细胞中V-H -ATP酶和酸性囊泡数密度以及p-mTORC2的激活。

Shear Stress Increases V-H -ATPase and Acidic Vesicle Number Density, and p-mTORC2 Activation in Prostate Cancer Cells.

作者信息

Khan Zeina S, Hussain Fazle

机构信息

Department of Mechanical Engineering, Texas Tech University, 2703 7th Street, Box: 41021, Lubbock, TX 79409 USA.

出版信息

Cell Mol Bioeng. 2020 Jul 2;13(6):591-604. doi: 10.1007/s12195-020-00632-1. eCollection 2020 Dec.

Abstract

INTRODUCTION

Cells in the tumor microenvironment experience mechanical stresses, such as compression generated by uncontrolled cell growth within a tissue, increased substrate stiffness due to tumor cell extracellular matrix (ECM) remodeling, and leaky angiogenic vessels which involve low fluid shear stress. With our hypothesis that shear stress increases V-H -ATPase number density in prostate cancer cells activation of the mTORC1 and mTORC2 pathways, we demonstrated and quantified such a mechanism in prostate cancer cells.

METHODS

Moderately metastatic DU145 and highly metastatic PC3 prostate cancer cells were subjected to 0.05 dynes wall shear stress for 24 h, followed by immunocytochemistry and fluorescence measurements of 1 integrin, endosome, lysosome, V-H -ATPase proton pump, mTORC1, and p-mTORC2 antibodies. Post shear stress migration assays, and the effects of vacuolar proton pump inhibitor Bafilomycin A1 (60 nM, 24 h) as well as shear stress on the ICC fluorescence intensity of the proteins of interest were conducted with DU145 cells.

RESULTS

Low fluid shear stress increases the fluorescence intensity of 1 integrin, endosome, lysosome, V-H -ATPase, mTORC1, and p-mTORC2 antibodies in PC3 and DU145 cells, and also increased cell migration. However, Bafilomycin A1 decreased fluorescence intensity of all of these proteins in DU145 cells exposed to shear stress, revealing that V-H -ATPase controls the expression of these proteins.

CONCLUSIONS

Prostate cancer cell mechanotransduction increases endosomes, lysosomes, and proton pumps-where increases have been associated with enhanced cancer aggressiveness. We also show that the prostate cancer cell's response to force promotes the cancer drivers mTORC1 and mTORC2.

摘要

引言

肿瘤微环境中的细胞会经历机械应力,例如组织内不受控制的细胞生长产生的压缩力、肿瘤细胞外基质(ECM)重塑导致的底物硬度增加,以及涉及低流体剪切应力的渗漏血管生成。基于我们的假设,即剪切应力会增加前列腺癌细胞中V-H -ATP酶的数量密度并激活mTORC1和mTORC2信号通路,我们在前列腺癌细胞中证实并量化了这一机制。

方法

将中度转移性DU145和高度转移性PC3前列腺癌细胞置于0.05达因的壁面剪切应力下处理24小时,随后进行免疫细胞化学检测,并对α1整合素、内体、溶酶体、V-H -ATP酶质子泵、mTORC1和p-mTORC2抗体进行荧光测量。对DU145细胞进行剪切应力后的迁移实验,以及空泡质子泵抑制剂巴弗洛霉素A1(60 nM,24小时)和剪切应力对感兴趣蛋白质的免疫细胞化学荧光强度的影响。

结果

低流体剪切应力增加了PC3和DU145细胞中α1整合素、内体、溶酶体、V-H -ATP酶、mTORC1和p-mTORC2抗体的荧光强度,同时也增加了细胞迁移。然而,巴弗洛霉素A1降低了暴露于剪切应力的DU145细胞中所有这些蛋白质的荧光强度,表明V-H -ATP酶控制这些蛋白质的表达。

结论

前列腺癌细胞的机械转导增加了内体、溶酶体和质子泵,而这些增加与癌症侵袭性增强有关。我们还表明,前列腺癌细胞对力的反应促进了癌症驱动因子mTORC1和mTORC2。

相似文献

1
Shear Stress Increases V-H -ATPase and Acidic Vesicle Number Density, and p-mTORC2 Activation in Prostate Cancer Cells.
Cell Mol Bioeng. 2020 Jul 2;13(6):591-604. doi: 10.1007/s12195-020-00632-1. eCollection 2020 Dec.
2
Curbing Breast Cancer by Altering V-ATPase Action on F-Actin, Heterochromatin, ETV7 and mTORC2 Signaling.
Cell Physiol Biochem. 2024 Jun 12;58(3):250-272. doi: 10.33594/000000706.
4
VD mitigates breast cancer aggressiveness by targeting V-H-ATPase.
J Nutr Biochem. 2019 Aug;70:185-193. doi: 10.1016/j.jnutbio.2019.05.005. Epub 2019 May 25.
5
F-actin reorganization by V-ATPase inhibition in prostate cancer.
Biol Open. 2017 Nov 15;6(11):1734-1744. doi: 10.1242/bio.028837.
8
The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma.
Pediatr Surg Int. 2008 Oct;24(10):1087-94. doi: 10.1007/s00383-008-2229-2.
9
Disruption of the vacuolar-type H-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes.
Autophagy. 2017 Apr 3;13(4):670-685. doi: 10.1080/15548627.2017.1280216. Epub 2017 Jan 27.

引用本文的文献

2
mTOR Signaling Components in Tumor Mechanobiology.
Int J Mol Sci. 2022 Feb 5;23(3):1825. doi: 10.3390/ijms23031825.

本文引用的文献

1
Vitamin D decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells.
J Nutr Biochem. 2018 Mar;53:111-120. doi: 10.1016/j.jnutbio.2017.10.013. Epub 2017 Nov 2.
2
Lysosomes as Oxidative Targets for Cancer Therapy.
Oxid Med Cell Longev. 2017;2017:3749157. doi: 10.1155/2017/3749157. Epub 2017 Jul 5.
3
Lysosomal Biology in Cancer.
Methods Mol Biol. 2017;1594:293-308. doi: 10.1007/978-1-4939-6934-0_19.
4
Fluid shear stress activates YAP1 to promote cancer cell motility.
Nat Commun. 2017 Jan 18;8:14122. doi: 10.1038/ncomms14122.
5
Critical Functions of the Lysosome in Cancer Biology.
Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:481-507. doi: 10.1146/annurev-pharmtox-010715-103101. Epub 2016 Oct 12.
6
Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells.
Oncotarget. 2016 May 31;7(22):32876-92. doi: 10.18632/oncotarget.8765.
7
Lysosomes in cancer-living on the edge (of the cell).
Curr Opin Cell Biol. 2016 Apr;39:69-76. doi: 10.1016/j.ceb.2016.02.009. Epub 2016 Feb 27.
8
Recent Insights into the Structure, Regulation, and Function of the V-ATPases.
Trends Biochem Sci. 2015 Oct;40(10):611-622. doi: 10.1016/j.tibs.2015.08.005.
9
CCM proteins control endothelial β1 integrin dependent response to shear stress.
Biol Open. 2014 Nov 28;3(12):1228-35. doi: 10.1242/bio.201410132.
10
Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8506-11. doi: 10.1073/pnas.1402195111. Epub 2014 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验