Suppr超能文献

金属与蛋白质的相互作用。

Metal protein interactions.

作者信息

Sarkar B

机构信息

Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.

出版信息

Prog Food Nutr Sci. 1987;11(3-4):363-400.

PMID:3328221
Abstract

Proteins associated with metals serve many important biological functions. The amino acid residues provide the functional groups in a protein which are the potential ligands for a metallic cation. Metals impart various effects on protein structure and bring about overall structural stability. These effects are seen in quarternary, secondary and tertiary structures of the protein. There are varieties of approaches to study metal protein interactions. The earliest technique being the equilibrium dialysis which is still used extensibly to determine the binding strength and the number of metals bound per protein molecule. There are a number of other techniques available which provide precise information about the nature of metal binding sites. They include electron spin resonance, UV and visible spectoscopy, nuclear magnetic resonance, resonance Raman, X-ray crystallography, X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (XAFS), etc. Selected metal protein interactions are discussed in this review. Albumin is the major plasma protein in blood which transports a number of metals. Detailed studies of Cu(II) and Ni(II) binding to albumin suggests that both metals have the same specific binding site at the NH2-terminal tripeptide sequence (Asp1-Ala2-His3...) involving the Asp alpha-NH2, His3 N (1) imidazole, two deprotonated peptide nitrogens (Ala2NH and His3NH), and Asp1 COO- group. Transferrin transports Fe(III) in blood. The protein possesses two metal-binding sites, each within a domain of bilobal proteins. Presence of carbonate is an important feature of Fe(III)-binding to transferrin. The binding site has been postulated as one involving Tyr 185 and Tyr 188 and suggests that two of the three histidines His 119, His 207 and His 249 also serve as ligands. Arginine 145 is a likely anchor for the carbonate anion. Superoxide dismutase is an enzyme found in erythrocytes which catalyzes the dismutation of superoxide radical. The protein is a dimer made up of two equivalent subunits. The subunits are held together by noncovalent interactions. For optimal enzymatic activity, at least two of the protein's four metal ions must be cupric. The results of the X-ray crystal structural analysis for Cu(II) and Zn(II) containing protein have been reported. In the metal-binding region of one subunit, Cu(II) and Zn(II) are separated by approximately 6A. The Cu(II) is bound to imidazole side chains of histidines 44, 46, 61 and 118 in a distorted square planar arrangement. The imidazole ring of histidine 61 is believed to be deprotonated and to serve as a bridge between Cu(II) and Zn(II).(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

与金属相关的蛋白质具有许多重要的生物学功能。氨基酸残基在蛋白质中提供官能团,这些官能团是金属阳离子的潜在配体。金属对蛋白质结构产生各种影响,并带来整体结构稳定性。这些影响在蛋白质的四级、二级和三级结构中都能看到。研究金属与蛋白质相互作用有多种方法。最早的技术是平衡透析,它至今仍被广泛用于确定结合强度以及每个蛋白质分子结合的金属数量。还有许多其他技术可提供有关金属结合位点性质的精确信息。它们包括电子自旋共振、紫外和可见光谱、核磁共振、共振拉曼、X射线晶体学、X射线吸收近边结构(XANES)、扩展X射线吸收精细结构(XAFS)等。本综述讨论了选定的金属与蛋白质的相互作用。白蛋白是血液中的主要血浆蛋白,可运输多种金属。对铜(II)和镍(II)与白蛋白结合的详细研究表明,这两种金属在NH2末端三肽序列(Asp1 - Ala2 - His3...)具有相同的特异性结合位点,涉及Asp的α - NH2、His3的N(1)咪唑、两个去质子化的肽氮(Ala2NH和His3NH)以及Asp1的COO - 基团。转铁蛋白在血液中运输铁(III)。该蛋白质具有两个金属结合位点,每个位点位于双叶蛋白的一个结构域内。碳酸根的存在是铁(III)与转铁蛋白结合的一个重要特征。结合位点被推测为一个涉及Tyr 185和Tyr 188的位点,并表明三个组氨酸His 119、His 207和His 249中的两个也作为配体。精氨酸145可能是碳酸根阴离子的锚定基团。超氧化物歧化酶是一种存在于红细胞中的酶,可催化超氧阴离子的歧化反应。该蛋白质是由两个等效亚基组成的二聚体。亚基通过非共价相互作用结合在一起。为了实现最佳酶活性,蛋白质的四个金属离子中至少有两个必须是铜离子。已经报道了含铜(II)和锌(II)蛋白质的X射线晶体结构分析结果。在一个亚基的金属结合区域中,铜(II)和锌(II)相隔约6埃。铜(II)以扭曲的平面正方形排列与组氨酸44、46、61和118的咪唑侧链结合。组氨酸61的咪唑环被认为是去质子化的,并作为铜(II)和锌(II)之间的桥梁。(摘要截选至400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验