Suppr超能文献

荧光共振能量转移(FRET)和荧光蛋白成熟对双通道荧光互相关光谱法定量结合亲和力的影响。

Influence of FRET and fluorescent protein maturation on the quantification of binding affinity with dual-channel fluorescence cross-correlation spectroscopy.

作者信息

Sreenivasan Varun K A, Graus Matthew S, Pillai Rashmi R, Yang Zhengmin, Goyette Jesse, Gaus Katharina

机构信息

EMBL Australia Node in Single Molecule Science, School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia.

出版信息

Biomed Opt Express. 2020 Oct 7;11(11):6137-6153. doi: 10.1364/BOE.401056. eCollection 2020 Nov 1.

Abstract

Protein-protein interactions at the plasma membrane mediate transmembrane signaling. Dual-channel fluorescence cross-correlation spectroscopy (dc-FCCS) is a method with which these interactions can be quantified in a cellular context. However, factors such as incomplete maturation of fluorescent proteins, spectral crosstalk, and fluorescence resonance energy transfer (FRET) affect quantification. Some of these can be corrected or accounted for during data analysis and/or interpretation. Here, we experimentally and analytically demonstrate that it is difficult to correct the error caused due to FRET when applying dc-FCCS to measure binding affinity or bound molecular concentrations. Additionally, the presence of dark fluorescent proteins due to incomplete maturation introduces further errors, which too cannot be corrected in the presence of FRET. Based on simulations, we find that modalities such as pulse-interleaved excitation FCCS do not eliminate FRET-induced errors. Finally, we demonstrate that the detrimental effect of FRET can be eliminated with careful experimental design when applying dc-FCCS to quantify protein-protein interactions at the plasma membrane of living cells.

摘要

质膜上的蛋白质-蛋白质相互作用介导跨膜信号传导。双通道荧光互相关光谱法(dc-FCCS)是一种可在细胞环境中对这些相互作用进行定量分析的方法。然而,诸如荧光蛋白成熟不完全、光谱串扰以及荧光共振能量转移(FRET)等因素会影响定量分析。其中一些因素可在数据分析和/或解释过程中得到校正或考虑。在此,我们通过实验和分析证明,在应用dc-FCCS测量结合亲和力或结合分子浓度时,难以校正由FRET引起的误差。此外,由于成熟不完全而存在的暗荧光蛋白会引入进一步的误差,在存在FRET的情况下,这些误差同样无法校正。基于模拟,我们发现诸如脉冲交错激发FCCS等模式并不能消除FRET诱导的误差。最后,我们证明,在应用dc-FCCS定量活细胞质膜上的蛋白质-蛋白质相互作用时,通过精心的实验设计可以消除FRET的有害影响。

相似文献

2
Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.
Methods Mol Biol. 2015;1271:205-19. doi: 10.1007/978-1-4939-2330-4_14.
3
4
Pulsed interleaved excitation.
Biophys J. 2005 Nov;89(5):3508-22. doi: 10.1529/biophysj.105.064766. Epub 2005 Aug 19.
5
Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.
Curr Pharm Biotechnol. 2005 Oct;6(5):405-14. doi: 10.2174/138920105774370625.
6
Fluorescence cross-correlation spectroscopy (FCCS) in living cells.
Methods Mol Biol. 2014;1076:557-73. doi: 10.1007/978-1-62703-649-8_25.
8
Quantifying Intramolecular Protein Conformational Dynamics Under Lipid Interaction Using smFRET and FCCS.
Methods Mol Biol. 2019;1860:345-359. doi: 10.1007/978-1-4939-8760-3_23.
9
Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy.
Biophys J. 2012 Mar 7;102(5):1174-83. doi: 10.1016/j.bpj.2012.01.040. Epub 2012 Mar 6.
10
Conformation of the c-Fos/c-Jun complex in vivo: a combined FRET, FCCS, and MD-modeling study.
Biophys J. 2008 Apr 1;94(7):2859-68. doi: 10.1529/biophysj.107.120766. Epub 2007 Dec 7.

引用本文的文献

1
Decoding mEos4b day-long maturation and engineering fast-maturing variants.
Protein Sci. 2025 Aug;34(8):e70234. doi: 10.1002/pro.70234.

本文引用的文献

1
Single-Color Fluorescence Lifetime Cross-Correlation Spectroscopy In Vivo.
Biophys J. 2020 Oct 6;119(7):1359-1370. doi: 10.1016/j.bpj.2020.06.039. Epub 2020 Aug 20.
2
3
Anomalous Diffusion in Inverted Variable-Lengthscale Fluorescence Correlation Spectroscopy.
Biophys J. 2019 Mar 5;116(5):791-806. doi: 10.1016/j.bpj.2019.01.024. Epub 2019 Jan 30.
4
Ligand-Induced Coupling between Oligomers of the M Receptor and the G Protein in Live Cells.
Biophys J. 2018 Sep 4;115(5):881-895. doi: 10.1016/j.bpj.2018.08.001. Epub 2018 Aug 8.
5
Quantifying membrane protein oligomerization with fluorescence cross-correlation spectroscopy.
Methods. 2018 May 1;140-141:40-51. doi: 10.1016/j.ymeth.2018.02.002. Epub 2018 Feb 13.
6
Studying GPCR Pharmacology in Membrane Microdomains: Fluorescence Correlation Spectroscopy Comes of Age.
Trends Pharmacol Sci. 2018 Feb;39(2):158-174. doi: 10.1016/j.tips.2017.11.004. Epub 2017 Dec 22.
8
Size-dependent protein segregation at membrane interfaces.
Nat Phys. 2016 Jul;12(7):704-711. doi: 10.1038/nphys3678. Epub 2016 Mar 7.
9
Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5454-63. doi: 10.1073/pnas.1607436113. Epub 2016 Aug 29.
10
Dopamine Receptor Signaling in MIN6 β-Cells Revealed by Fluorescence Fluctuation Spectroscopy.
Biophys J. 2016 Aug 9;111(3):609-618. doi: 10.1016/j.bpj.2016.06.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验