Suppr超能文献

通过时间分辨荧光光谱法PIE-FCCS原位检测视紫红质二聚化。

Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

作者信息

Smith Adam W

机构信息

Department of Chemistry, University of Akron, 190 Buchtel Common, Akron, OH, 44325-3601, USA,

出版信息

Methods Mol Biol. 2015;1271:205-19. doi: 10.1007/978-1-4939-2330-4_14.

Abstract

Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These analysis tools can then be used to quantify protein concentration, mobility, clustering, and Förster resonance energy transfer (FRET). In this paper I will focus on PIE-FCCS, which interleaves two wavelength excitation events in time so that the effects of spectral cross-talk and FRET can be isolated. In this way it is possible to characterize monomer-dimer-oligomer equilibria with high accuracy (Müller et al., Biophys J 89:3508-3522, 2005). Currently, PIE-FCCS requires a customized equipment configuration that will be described below. There is an excellent protocol that outlines traditional FCCS on a commercially available instrument (Bacia and Schwille, Nat Protoc 2:2842-2856, 2007). The PIE-FCCS approach is a relatively recent advance in FCCS that has been used in live cell assays to quantify lipid-anchored protein clustering (Triffo et al., J Am Chem Soc 134:10833-10842, 2012), epidermal growth factor receptor dimerization (Endres et al., Cell 152:543-556, 2013), and recently the dimerization of opsin (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). This paper will outline the theory and instrumentation requirements for PIE-FCCS, as well as the data collection and analysis process.

摘要

视紫红质在质膜中会发生自缔合。在低浓度时,其相互作用符合单体 - 二聚体平衡(科马尔等人,《美国化学会志》136(23):8342 - 8349,2014年)。在天然组织的高浓度下,已观察到高阶聚集体(福蒂亚迪斯等人,《自然》421:127 - 128,2003年)。视紫红质二聚化的生理作用仍在研究中,但很明显,定量评估对于确定视紫红质聚集体在视觉中的功能至关重要。为了量化视紫红质的相互作用,我将概述一种专门用于测量膜蛋白 - 蛋白相互作用的时间分辨荧光光谱技术的理论和方法,称为脉冲交错激发荧光互相关光谱(PIE - FCCS)。该技术的优势在于能够原位(即活细胞质膜)量化视紫红质的相互作用。将范围限制在活细胞膜有两个原因。首先,质膜的成分异质性创造了一个包含数千种脂质、蛋白质和碳水化合物的复杂环境。这使得从去污剂溶解的样品中推断四级相互作用或构建一个概括天然膜中所有相互作用的模型磷脂双层变得困难。其次,组织结构和动力学是质膜的一个关键特征,像甲醛交联和玻璃化这样的固定技术会调节相互作用。PIE - FCCS基于带有时间相关单光子计数(TCSPC)的双色荧光成像(贝克尔等人,《科学仪器评论》70:1835 - 1841,1999年)。通过对每个检测到的光子进行时间标记,数据可以作为荧光强度分布、荧光寿命直方图或荧光(互)相关光谱(FCS/FCCS)进行分析(贝克尔,《先进的时间相关单光子计数技术》,施普林格出版社,柏林,2005年)。然后这些分析工具可用于量化蛋白质浓度、流动性、聚集体形成以及Förster共振能量转移(FRET)。在本文中,我将重点介绍PIE - FCCS,它在时间上交错两个波长的激发事件,以便能够分离光谱串扰和FRET的影响。通过这种方式,可以高精度地表征单体 - 二聚体 - 寡聚体平衡(米勒等人,《生物物理杂志》89:3508 - 3522,2005年)。目前,PIE - FCCS需要下面将描述的定制设备配置。有一个很好的方案概述了在商用仪器上的传统FCCS(巴西亚和施维勒,《自然方法》2:2842 - 2856,2007年)。PIE - FCCS方法是FCCS中相对较新的进展,已用于活细胞分析中量化脂质锚定蛋白聚集体(特里福等人,《美国化学会志》134:10833 - 10842,2012年)、表皮生长因子受体二聚化(恩德斯等人,《细胞》152:543 - 556,2013年),以及最近视蛋白的二聚化(科马尔等人,《美国化学会志》136(23):8342 - 8349,2014年)。本文将概述PIE - FCCS的理论和仪器要求,以及数据收集和分析过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验