Suppr超能文献

用于预测恶性肿瘤患者对安罗替尼治疗反应的纵向药物代谢组学:表型、疗效和毒性

Longitudinal Pharmacometabonomics for Predicting Malignant Tumor Patient Responses to Anlotinib Therapy: Phenotype, Efficacy, and Toxicity.

作者信息

Hu Ting, An Zhuoling, Sun Yongkun, Wang Xunqiang, Du Ping, Li Pengfei, Chi Yihebali, Liu Lihong

机构信息

Pharmaceutical Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Oncol. 2020 Nov 12;10:548300. doi: 10.3389/fonc.2020.548300. eCollection 2020.

Abstract

Anlotinib is an oral small molecule inhibitor of multiple receptor tyrosine kinases (RTKs), which was approved by the National Medical Products Administration (NMPA) of China in 2018 for the third-line treatment of non-small cell lung cancer (NSCLC). Here, for the first time, the longitudinal pharmacometabonomics was explored for predicting malignant tumor patient responses to anlotinib, including the metabolic phenotype variation, drug efficacy, and toxicity. A total of 393 plasma samples from 16 subjects collected from a phase I additional study of anlotinib (NCT02752516) were submitted to targeted metabolomics analysis. The orthogonal partial least-squares discriminant analysis (OPLS-DA) models were constructed for the predication of anlotinib efficacy and toxicity based on the longitudinal pharmacometabonomics data. Statistical results showed that 38 metabolites, mainly involved in aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate metabolism, and steroid hormone biosynthesis, were all significantly upregulated attributing to anlotinib treatment. The anti-tumor efficacy and occurrence of proteinuria after anlotinib administration can be predicted with 100% accuracy using the established OPLS-DA models. Glycodeoxycholic acid and glycocholic acid possessed the most excellent sensitivity and specificity in predicting the efficacy of anlotinib, with area under the receiver operating characteristic curve (AUC of ROC curve) 0.847 and 0.828, respectively. NG, NG-dimethylarginine was the most promising biomarker for the prediction of proteinuria occurrence after anlotinib administration, with AUC of ROC curve 0.814. In conclusion, this work developed efficient and convenient discriminant models that can accurately predict the efficacy and toxicity of anlotinib based on longitudinal pharmacometabonomics study.

摘要

安罗替尼是一种口服的多受体酪氨酸激酶(RTK)小分子抑制剂,于2018年被中国国家药品监督管理局(NMPA)批准用于非小细胞肺癌(NSCLC)的三线治疗。在此,首次探索了纵向药物代谢组学以预测恶性肿瘤患者对安罗替尼的反应,包括代谢表型变化、药物疗效和毒性。从安罗替尼的一项I期附加研究(NCT02752516)中收集的16名受试者的393份血浆样本被用于靶向代谢组学分析。基于纵向药物代谢组学数据构建了正交偏最小二乘判别分析(OPLS-DA)模型,用于预测安罗替尼的疗效和毒性。统计结果显示,38种代谢物主要参与氨酰-tRNA生物合成、丙氨酸、天冬氨酸和谷氨酸代谢以及类固醇激素生物合成,均因安罗替尼治疗而显著上调。使用建立的OPLS-DA模型可以100%准确地预测安罗替尼给药后的抗肿瘤疗效和蛋白尿的发生。甘氨脱氧胆酸和甘氨胆酸在预测安罗替尼疗效方面具有最优异的敏感性和特异性,受试者工作特征曲线下面积(ROC曲线AUC)分别为0.847和0.828。NG,NG-二甲基精氨酸是预测安罗替尼给药后蛋白尿发生最有前景的生物标志物,ROC曲线AUC为0.814。总之,这项工作基于纵向药物代谢组学研究开发了高效便捷的判别模型,能够准确预测安罗替尼的疗效和毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd74/7689013/52ee9d7ee5b6/fonc-10-548300-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验