Byeon Young-Woon, Ahn Jae-Pyoung, Lee Jae-Chul
Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Small. 2020 Dec;16(52):e2004868. doi: 10.1002/smll.202004868. Epub 2020 Nov 30.
The diffusion of carrier ions in alloying anodes often develops compressive stresses in front of the propagating interface, suppressing the carrier-ion diffusion and limiting their full penetration into alloying anodes during battery cycles. This phenomenon, termed "self-limiting diffusion (SLD)", reduces the rate performance of batteries and hinders the full usage of anode materials. However, SLD is mitigated in some systems where tensile residual stresses develop at the interface, causing them to manifest significantly improved rate performance and energy capacity. Here, a comparative study of LiSi and NaSn systems to elucidate how the differing diffusion kinetics displayed by the two systems can influence SLD behaviors and the rate performance of batteries is performed. Experiments show that the Na diffusion into soft Sn crystals induces tensile stresses near the interface, promoting the nucleation of high-density dislocations. Thus-formed dislocations facilitate Na diffusion at ultrafast rates by providing pathways for dislocation pipe diffusion and alleviate SLD, making crystalline Sn suitable for fast-charging anode material. The outcomes of this study, while filling the knowledge gaps on the reasons for SLD, offer some guidelines for the appropriate choice of potential anode materials with superior rate performance and energy capacity suitable for future applications.
在合金化阳极中,载流子离子的扩散通常会在扩展界面之前产生压应力,从而抑制载流子离子的扩散,并限制它们在电池循环过程中完全渗透到合金化阳极中。这种现象被称为“自限扩散(SLD)”,它会降低电池的倍率性能,并阻碍阳极材料的充分利用。然而,在一些系统中,界面处会产生拉伸残余应力,从而减轻了SLD,使这些系统表现出显著改善的倍率性能和能量容量。在此,对LiSi和NaSn系统进行了一项对比研究,以阐明这两个系统所表现出的不同扩散动力学如何影响SLD行为和电池的倍率性能。实验表明,钠扩散到软锡晶体中会在界面附近诱导拉伸应力,促进高密度位错的形核。这样形成的位错通过为位错管道扩散提供途径,以超快的速率促进钠扩散,并减轻SLD,使得结晶锡适合用作快速充电阳极材料。这项研究的结果在填补关于SLD原因的知识空白的同时,也为选择具有优异倍率性能和能量容量、适合未来应用的潜在阳极材料提供了一些指导方针。