Sanchez-Mico Maria V, Jimenez Sebastian, Gomez-Arboledas Angela, Muñoz-Castro Clara, Romero-Molina Carmen, Navarro Victoria, Sanchez-Mejias Elisabeth, Nuñez-Diaz Cristina, Sanchez-Varo Raquel, Galea Elena, Davila José C, Vizuete Marisa, Gutierrez Antonia, Vitorica Javier
Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.
Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
Glia. 2021 Apr;69(4):997-1011. doi: 10.1002/glia.23943. Epub 2020 Dec 7.
Reactive astrocytes and dystrophic neurites, most aberrant presynaptic elements, are found surrounding amyloid-β plaques in Alzheimer's disease (AD). We have previously shown that reactive astrocytes enwrap, phagocytose, and degrade dystrophic synapses in the hippocampus of APP mice and AD patients, but affecting less than 7% of dystrophic neurites, suggesting reduced phagocytic capacity of astrocytes in AD. Here, we aimed to gain insight into the underlying mechanisms by analyzing the capacity of primary astrocyte cultures to phagocytose and degrade isolated synapses (synaptoneurosomes, SNs) from APP (containing dystrophic synapses and amyloid-β peptides), Tau (containing AT8- and AT100-positive phosphorylated Tau) and WT (controls) mice. We found highly reduced phagocytic and degradative capacity of SNs-APP, but not AT8/AT100-positive SNs-Tau, as compared with SNs-WT. The reduced astrocyte phagocytic capacity was verified in hippocampus from 12-month-old APP mice, since only 1.60 ± 3.81% of peri-plaque astrocytes presented phagocytic structures. This low phagocytic capacity did not depend on microglia-mediated astrocyte reactivity, because removal of microglia from the primary astrocyte cultures abrogated the expression of microglia-dependent genes in astrocytes, but did not affect the phagocytic impairment induced by oligomeric amyloid-β alone. Taken together, our data suggest that amyloid-β, but not hyperphosphorylated Tau, directly impairs the capacity of astrocytes to clear the pathological accumulation of oligomeric amyloid-β, as well as of peri-plaque dystrophic synapses containing amyloid-β, perhaps by reducing the expression of phagocytosis receptors such as Mertk and Megf10, thus increasing neuronal damage in AD. Therefore, the potentiation or recovery of astrocytic phagocytosis may be a novel therapeutic avenue in AD.
在阿尔茨海默病(AD)中,反应性星形胶质细胞和营养不良性神经突(大多数是异常的突触前成分)出现在β淀粉样蛋白斑块周围。我们之前已经表明,反应性星形胶质细胞会包裹、吞噬并降解APP小鼠和AD患者海马体中的营养不良性突触,但受影响的营养不良性神经突不到7%,这表明AD中星形胶质细胞的吞噬能力下降。在此,我们旨在通过分析原代星形胶质细胞培养物吞噬和降解来自APP(含有营养不良性突触和β淀粉样蛋白肽)、Tau(含有AT8和AT100阳性磷酸化Tau)和野生型(对照)小鼠的分离突触(突触体,SNs)的能力,来深入了解其潜在机制。我们发现,与SNs-WT相比,SNs-APP的吞噬和降解能力显著降低,但AT8/AT100阳性的SNs-Tau则没有。在12个月大的APP小鼠的海马体中验证了星形胶质细胞吞噬能力的降低,因为只有1.60±3.81%的斑块周围星形胶质细胞呈现出吞噬结构。这种低吞噬能力并不依赖于小胶质细胞介导的星形胶质细胞反应性,因为从小胶质细胞原代培养物中去除小胶质细胞可消除星形胶质细胞中小胶质细胞依赖性基因的表达,但并不影响由寡聚β淀粉样蛋白单独诱导的吞噬功能受损。综上所述,我们的数据表明,β淀粉样蛋白而非过度磷酸化的Tau直接损害星形胶质细胞清除寡聚β淀粉样蛋白的病理性积累以及含有β淀粉样蛋白的斑块周围营养不良性突触的能力,可能是通过降低诸如Mertk和Megf10等吞噬受体的表达,从而增加AD中的神经元损伤。因此,增强或恢复星形胶质细胞的吞噬作用可能是AD的一种新的治疗途径。