Suppr超能文献

Chemoinformatics for the Safety of Energetic and Reactive Materials at Ineris.

作者信息

Fayet Guillaume, Rotureau Patricia

机构信息

Ineris, Accidental Risk Division, Parc Technologique Alata, 60550, Verneuil-en-Halatte, France.

出版信息

Mol Inform. 2022 Jan;41(1):e2000190. doi: 10.1002/minf.202000190. Epub 2020 Dec 17.

Abstract

The characterization of physical hazards of substances is a key information to manage the risks associated to their use, storage and transport. With decades of work in this area, Ineris develops and implements cutting-edge experimental facilities allowing such characterizations at different scales and under various conditions to study all of the dreaded accident scenarios. This review presents the efforts engaged by Ineris more recently in the field of chemoinformatics to develop and use new predictive methods for the anticipation and management of industrials risks associated to energetic and reactive materials as a complement to experiments. An overview of the methods used for the development of Quantitative Structure-Property Relationships for physical hazards are presented and discussed regarding the specificities associated to this class of properties. A review of models developed at Ineris is also provided from the first tentative models on the explosivity of nitro compounds to the successful application to the flammability of organic mixtures. Then, a discussion is proposed on the use of QSPR models. Good practices for robust use for QSPR models are recalled with specific comments related to physical hazards, notably for regulatory purpose. Dissemination and training efforts engaged by Ineris are also presented. The potential offered by these predictive methods in terms of in silico design and for the development of new intrinsically safer technologies in safety-by-design strategies is finally discussed. At last, challenges and perspectives to extend the application of chemoinformatics in the field of safety and in particular for the physical hazards of energetic and reactive substances are proposed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验