Wang Yilin, Wang Beibei, Zhang Yichen, Zhang Jiquan, Song Yijie, Yang Shuang-Hua
College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China.
School of Environment, Northeast Normal University, Changchun, 130117, China.
J Cheminform. 2025 Aug 5;17(1):118. doi: 10.1186/s13321-025-01060-x.
Chemical explosion accidents represent a significant threat to both human safety and environmental integrity. The accurate prediction of such incidents plays a pivotal role in risk mitigation and safety enhancement within the chemical industry. This study proposes an innovative Bayes-Transformer-SVM model based on multimodal feature fusion, integrating Quantitative Structure-Property Relationship (QSPR) and Quantitative Property-Consequence Relationship (QPCR) principles. The model utilizes molecular descriptors derived from the Simplified Molecular Input Line Entry System (SMILES) and Gaussian16 software, combined with leakage condition parameters, as input features to investigate the quantitative relationship between these factors and explosion consequences. A comprehensive validation and evaluation of the constructed model were performed. Results demonstrate that the optimized Bayes-Transformer-SVM model achieves superior performance, with test set metrics reaching an R of 0.9475 and RMSE of 0.1139, outperforming alternative prediction models. The developed model offers a novel and effective approach for assessing explosion risks associated with both existing and newly developed chemical substances. The model enables rapid explosion consequence assessment for chemical storage or transport scenarios, supporting safety-by-design frameworks. SCIENTIFIC CONTRIBUTIONS: This study constructed a Bayes-Transformer-SVM model for predicting the consequences of hazardous chemical explosions. The model utilized SMILES encoding and Gaussian16 quantum chemical descriptors, combined with leakage condition scenario parameters, achieving excellent performance. Its core lies in the establishment of a multimodal fusion theoretical framework, breaking through the limitations oftraditional cross-modal correlation analysis; the development of an optimized architecture that combines Transformer feature extraction and SVM regression; highlighting the potential application of the model in chemoinformatics; and enabling the prospective assessment of the explosion risks of unknown chemicals, supporting a safety-oriented design concept.
化学爆炸事故对人类安全和环境完整性构成重大威胁。此类事故的准确预测在化工行业的风险缓解和安全提升中起着关键作用。本研究提出了一种基于多模态特征融合的创新型贝叶斯 - 变压器 - 支持向量机模型,整合了定量结构 - 性质关系(QSPR)和定量性质 - 后果关系(QPCR)原理。该模型利用源自简化分子输入线输入系统(SMILES)和高斯16软件的分子描述符,结合泄漏条件参数,作为输入特征来研究这些因素与爆炸后果之间的定量关系。对构建的模型进行了全面的验证和评估。结果表明,优化后的贝叶斯 - 变压器 - 支持向量机模型具有卓越的性能,测试集指标达到R为0.9475,均方根误差为0.1139,优于其他预测模型。所开发的模型为评估现有和新开发化学物质相关的爆炸风险提供了一种新颖有效的方法。该模型能够对化学储存或运输场景进行快速爆炸后果评估,支持设计安全框架。科学贡献:本研究构建了一个用于预测危险化学品爆炸后果的贝叶斯 - 变压器 - 支持向量机模型。该模型利用SMILES编码和高斯16量子化学描述符,结合泄漏条件场景参数,取得了优异的性能。其核心在于建立了一个多模态融合理论框架,突破了传统跨模态相关性分析的局限性;开发了一种结合变压器特征提取和支持向量机回归的优化架构;突出了该模型在化学信息学中的潜在应用;并能够对未知化学品的爆炸风险进行前瞻性评估,支持以安全为导向的设计理念。